Operations Research II, IEOR161
University of California, Berkeley
Midterm Exam II, 2009

Name:
Student ID:
[IEOR161 Midterm Exam]
[IEOR161 Midterm Exam]
[IEOR161 Midterm Exam]]

1. [15] An airline reservation system has 2 indistinguishable computers, of which only one can be used at any given time. A computer in use may break down on any given day with probability p (a computer not in use cannot break down). There is a single repair facility that takes 2 days to restore a computer to normal. The facility is such that it only begins repairs in the beginning of the day and it can only deal with one computer at a time. Form a Markov chain by taking as states the pairs (x, y) where x is the number of machines in operating condition at the beginning of a day and y is 1 if a day's worth of repair has been expended on a machine not yet operational and 0 otherwise.
(a) What are the 4 possible values for the state (x, y) ?
(b) What is the transition matrix/diagram?
(c) Write down the equations for the stationary distribution (do not solve them).
2. [15] What is the stationary distribution of a 3 state Markov chain (with states $\{1,2,3\}$) and transition matrix

$$
P=\left[\begin{array}{ccc}
0.4 & 0.2 & 0.4 \\
0 & 0.4 & 0.6 \\
0.8 & 0.2 & 0
\end{array}\right]
$$

3. [15] Consider a Poisson process with rate λ. Let S_{1} be the time of the first arrival, S_{2} the time of the second arrival, S_{3} the time of the third arrival (etc). Calculate

$$
E\left\{\sum_{j=1}^{N(T)} S_{j}\right\}
$$

Explain your working.
4. [15] Men arrive according to a Poisson process of rate $\lambda=3$ (per hour) while women arrive according to a Poisson process of rate $\mu=5$ (per hour). The arrival processes for men and women are independent. Given that 8 people (men or women) arrived between 12 pm and 1 pm , what is the probability they all arrived between $12: 15 \mathrm{pm}$ and $12: 45 \mathrm{pm}$?

