Solutions to IEOR 130 Midterm Examination
 Spring 2004
 Prof. Leachman

1. (a) Countable parameter, so use C-chart
(b) $\mathrm{Cpk}=(\mathrm{USL}-\mu) / 3 \sigma=(\mathrm{USL}-\mu) / 3 * \operatorname{SQRT}(\mu)$

$$
\begin{aligned}
& \mathrm{UCL}=60=\mu+3 \operatorname{SQRT}(\mu) \\
& 60-\mu=3 \operatorname{SQRT}(\mu) \\
& 3600-120 \mu+\mu^{2}=9 \mu \\
& 3600-129 \mu+\mu^{2}=0
\end{aligned}
$$

Using quadratic formula, we find $\mu=40.83$
Hence $\mathrm{Cpk}=(50-40.83) / 3 \operatorname{SQRT}(40.83)=0.478$
(c) Yield $=\operatorname{Prob}\{\mathrm{X}<\mathrm{USL}\}=\operatorname{Prob}\{\mathrm{Z}<(\mathrm{USL}-\mu) / \sigma\}=\Phi(3 \mathrm{Cpk})=\Phi(1.435)=$ 0.924
(d) For Prob $=0.95$, we want $3 \mathrm{Cpk}=1.65$, i.e., $\mathrm{Cpk}=0.55$
2. (a) $M Y=Y_{R}+3 * \operatorname{SQRT}\left[Y_{R}\left(1-Y_{R}\right) / G D\right]$

$$
\begin{aligned}
& \left(0.85-\mathrm{Y}_{\mathrm{R}}\right)^{2}=(9 / \mathrm{GD})\left[\mathrm{Y}_{\mathrm{R}}-\mathrm{Y}_{\mathrm{R}}^{2}\right] \\
& 0.7225-1.7 * \mathrm{Y}_{\mathrm{R}}+\mathrm{Y}_{\mathrm{R}}^{2}=0.009 * \mathrm{Y}_{\mathrm{R}}-0.009 * \mathrm{Y}_{\mathrm{R}}^{2}
\end{aligned}
$$

$$
0.7225-1.709 * Y_{R}+1.009 * Y_{R}^{2}=0
$$

Using quadratic formula, we find $\mathrm{Y}_{\mathrm{R}}=0.8129$
(b) $\mathrm{Y}_{\mathrm{R}}{ }^{\text {new }}=\exp (\mathrm{A} \Delta \mathrm{D}) * \mathrm{Y}_{\mathrm{R}}=\exp (0.5 * 0.05) * \mathrm{Y}_{\mathrm{R}}=1.025 * \mathrm{Y}_{\mathrm{R}}=0.8335$

$$
M Y^{\text {new }}=Y_{R}{ }^{\text {new }}+3 * S Q R T\left[Y_{R}{ }^{\text {new }}\left(1-Y_{R}{ }^{\text {new }}\right) / G D\right]=0.869
$$

3. (a) 6 lots is 1.5 furnace loads. $\mathrm{U}=(1.5)(8) / 24=0.5$
(b) $0.5=\mathrm{U}=$ (expected time consumed by furnace cycles between O ring replacements) / (expected total time between O ring replacements)

Hence expected total time between O ring replacements $=2^{*}($ expected time consumed by furnace cycles)
(c) Minimize (O ring replacement time + expected time consumed by bad furnace run) / (expected total time between O ring replacements)
or Minimize (O ring replacement time + expected time consumed by bad furnace run) / [2* (expected time consumed by furnace cycles)]
or Minimize $\mathrm{G}(\mathrm{t})=\left(2+8 \Sigma \mathrm{k}=1\right.$ to $\left.\mathrm{t} \mathrm{p}_{\mathrm{k}}\right) / 2 *\left[8 * \mathrm{t}\left(1-\Sigma \mathrm{k}=1\right.\right.$ to $\left.\mathrm{p} \mathrm{p}_{\mathrm{k}}\right)+8 * \Sigma \mathrm{k}=1$ to p_{k} $\mathrm{k}^{*} \mathrm{p}_{\mathrm{k}}$]
where p_{k} 's are given in the problem.
(d)
t pt $\quad \Sigma \mathrm{pk} 1-\Sigma \mathrm{pk} \Sigma \mathrm{kpk} \mathrm{t}(1-\Sigma \mathrm{pk})$ Numerator Denominator $\mathrm{G}(\mathrm{t})$

1	0.10	0.10	0.90	0.10	0.90	2.80	16.0

2	0.15	0.25	0.75	0.40	1.50	4.00	30.4

3	0.20	0.45	0.55	1.00	1.65	5.60	42.4

4	0.30	0.75	0.25	2.20	1.00	8.00	51.2	0.156
5	0.25	1.00	0.00	3.25	0.00	10.00	52.0	0.192

It's best to plan O ring replacements after every 2 furnace runs.

