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1. (a) Let Tj denote the amount of time when exactly j components are working. Since every-
thing starts over when a failure occurs, Tj also denotes the time until the next failure
given that we start with j new components, and therefore Tj is exponentially distributed
with rate j × λ (i.e. dist(Tj) = dist(min(X1, . . . , Xj)) where {Xj} are independent ex-
ponential with rate λ.)

Thus,

E[profit] = E[10(T4 + T3) + 5T2 + 2T1] = 10

(
1

4λ
+

1

3λ

)
+

5

2λ
+

2

λ

(b) Let Li denote the lifetime of component i, then

P{no component fails in the first hour} = P{min(L1, L2, L3, L4) > 1} = e−4λ·1

since min(L1, L2, L3, L4) is exponentially distributed with rate 4λ and recall that if Z is
exponentially distributed with rate α (i.e. with mean 1/α), and c is a positive number,
then P{Z > a} = e−αa.

2. (a)

P{a customer will buy a house} = P{Xj > y} = e−
1
µ

y

where Xj is exponentially distributed with mean µ (i.e. with rate 1/µ.)

(b) Since each arrival is independently willing to buy a house with probability e−
1
µ

y (from

(a)), we have the process {NB(t), t ≥ 0} is a Poisson process with rate λe−
1
µ

y where
NB(t) denotes the number of arrivals who are willing to buy houses by time t. Therefore,

the distribution of the inter-arrival time of this process is exponential with rate λe−
1
µ

y.

(c) Consider first that if we sell 100 houses, each at price y, then the total revenue will be
100 y. Now let SB

n denote the time of the nth arrival of process {NB(t), t ≥ 0}. We have
SB

n is the sum of n independent exponential random variables, each of which has mean

1/(λe−
1
µ

y) (i.e. SB
n is gamma(n, λe−

1
µ

y)) and hence

E[SB
n ] =

n

λe−
1
µ

y

Since the cost is c per day, the total cost until we sell all 100 houses is c × SB
100. The

expected total profit is therefore

E[revenue]− E[cost] = E[100y]− E[c× SB
100] = 100y − 100c

λe−
1
µ

y
(1)

1



(d) Taking the first derivative of (1) with respect to y and setting it equal to 0 gives

100− 100c

λµ
e

1
µ

y = 0

Solving the above equation yields

y∗ = µ ln

(
λµ

c

)

Note that the second derivative of (1) with respect to y is

−100c

λµ2
e

1
µ

y < 0

and hence the above y∗ is the unique optimal price. Now the optimal expected profit is
obtained by substituting y∗ into (1), i.e. the optimal expected profit is

100µ ln

(
λµ

c

)
− 100µ

3. Let NR(t) and NG(t) denote the number of arrivals by time t whose t-shirts are red and
green, respectively. Also, let {TR

i } and {TG
i } denote the inter-arrival times of processes

{NR(t), t ≥ 0} and {NG(t), t ≥ 0} respectively.

Since each time we have an arrival, everything starts over (each process is a Poisson process),
we have the distribution of the inter-arrival times of process {NR(t) + NG(t), t ≥ 0} is the
same as the distribution of min(TR

i , TG
j ) which is exponential with rate λ + µ.

4. See solutions for homework 11.

5. Let N(t) denote the number of arrivals by time t of the Poisson process with rate λ = 2.

(a) Note that N(t + s)−N(t) is Poisson with mean λs.

P{N(1) = 0, N(10)−N(9) = 0} = P{N(1) = 0} × P{N(10)−N(9) = 0}
by independent increments

=
e−λ·1(λ · 1)0

0!
× e−λ·(10−9)(λ · (10− 9))0

0!
= e−2λ = e−4

(b) Recall that given N(t) = n, the arrival time of each of the first n arrivals is independent
uniform(0, t). So given N(10) = 5, each of the first 5 arrivals independently arrives
uniformly over (0,10) (hence for each of these 5 arrivals, the probability that this arrival
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arrives during the first hour is 1/10, during the last hour is 1/10, and after the first hour
but before the last hour is 8/10.) Thus,

P{N(1) = 1, N(10)−N(9) = 1|N(10) = 5}
= P{N(1) = 1, N(10)−N(9) = 1, N(9)−N(1) = 3|N(10) = 5}

=
5!

1!3!1!
× 1

10
×

(
8

10

)3

× 1

10

where the last line comes from multinomial distribution.

(c) Recall that for any two events A and B, we have (A∩B)C = AC∪BC , P{A} = 1−P{AC},
and P{A ∪B} = P{A}+ P{B} − P{A ∩B}.
Now

P{N(1) ≥ 1, N(10)−N(9) ≥ 1|N(10) = 5}
= 1− P{N(1) = 0 ∪N(10)−N(9) = 0|N(10) = 5}
= 1−

(
P{N(1) = 0|N(10) = 5}+ P{N(10)−N(9) = 0|N(10) = 5}

−P{N(1) = 0, N(10)−N(9) = 0|N(10) = 5}
)

= 1−
( (

9

10

)5

+

(
9

10

)5

−
(

8

10

)5 )
(2)

Alternatively, let the first 5 arrivals be A,B, C, D and E, and let Sk denote the arrival
time of k for k ∈ {A,B, C, D, E}, Smin = min(SA, . . . , SE), Smax = max(SA, . . . , SE).
Now

P{N(1) ≥ 1, N(10)−N(9) ≥ 1|N(10) = 5}
=

∑

j 6=k∈{A,...,E}
P{N(1) ≥ 1, N(10)−N(9) ≥ 1, Sj = Smin, Sk = Smax|N(10) = 5}

= 5 · 4 · P{N(1) ≥ 1, N(10)−N(9) ≥ 1, SA = Smin, SB = Smax|N(10) = 5}
by symmetry

= 20

∫ 1

0

P{N(1) ≥ 1, N(10)−N(9) ≥ 1, SA = Smin, SB = Smax|N(10) = 5, SA = x} 1

10
dx

= 20

∫ 1

0

∫ 10

9

P{N(1) ≥ 1, N(10)−N(9) ≥ 1, SA = Smin, SB = Smax

|N(10) = 5, SA = x, SB = y} 1

10
· 1

10
dydx

= 20

∫ 1

0

∫ 10

9

P{x ≤ SC , SD, SE ≤ y|N(10) = 5} 1

10
· 1

10
dydx

= 20

∫ 1

0

∫ 10

9

(
y − x

10

)3
1

10
· 1

10
dydx

Integrating the last equation gives the same result as in (2).
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