Operations Research II IEOR 161 University of California, Berkeley Spring 2004

Solutions for Midterm 2

1. (a) Let T_{j} denote the amount of time when exactly j components are working. Since everything starts over when a failure occurs, T_{j} also denotes the time until the next failure given that we start with j new components, and therefore T_{j} is exponentially distributed with rate $j \times \lambda$ (i.e. $\operatorname{dist}\left(T_{j}\right)=\operatorname{dist}\left(\min \left(X_{1}, \ldots, X_{j}\right)\right)$ where $\left\{X_{j}\right\}$ are independent exponential with rate λ.)
Thus,

$$
E[\text { profit }]=E\left[10\left(T_{4}+T_{3}\right)+5 T_{2}+2 T_{1}\right]=10\left(\frac{1}{4 \lambda}+\frac{1}{3 \lambda}\right)+\frac{5}{2 \lambda}+\frac{2}{\lambda}
$$

(b) Let L_{i} denote the lifetime of component i, then

$$
P\{\text { no component fails in the first hour }\}=P\left\{\min \left(L_{1}, L_{2}, L_{3}, L_{4}\right)>1\right\}=e^{-4 \lambda \cdot 1}
$$

since $\min \left(L_{1}, L_{2}, L_{3}, L_{4}\right)$ is exponentially distributed with rate 4λ and recall that if Z is exponentially distributed with rate α (i.e. with mean $1 / \alpha$), and c is a positive number, then $P\{Z>a\}=e^{-\alpha a}$.
2. (a)

$$
P\{\text { a customer will buy a house }\}=P\left\{X_{j}>y\right\}=e^{-\frac{1}{\mu} y}
$$

where X_{j} is exponentially distributed with mean μ (i.e. with rate $1 / \mu$.)
(b) Since each arrival is independently willing to buy a house with probability $e^{-\frac{1}{\mu} y}$ (from (a)), we have the process $\left\{N_{B}(t), t \geq 0\right\}$ is a Poisson process with rate $\lambda e^{-\frac{1}{\mu} y}$ where $N_{B}(t)$ denotes the number of arrivals who are willing to buy houses by time t. Therefore, the distribution of the inter-arrival time of this process is exponential with rate $\lambda e^{-\frac{1}{\mu} y}$.
(c) Consider first that if we sell 100 houses, each at price y, then the total revenue will be $100 y$. Now let S_{n}^{B} denote the time of the $n^{\text {th }}$ arrival of process $\left\{N_{B}(t), t \geq 0\right\}$. We have S_{n}^{B} is the sum of n independent exponential random variables, each of which has mean $1 /\left(\lambda e^{-\frac{1}{\mu} y}\right)$ (i.e. S_{n}^{B} is gamma $\left(n, \lambda e^{-\frac{1}{\mu} y}\right)$) and hence

$$
E\left[S_{n}^{B}\right]=\frac{n}{\lambda e^{-\frac{1}{\mu} y}}
$$

Since the cost is c per day, the total cost until we sell all 100 houses is $c \times S_{100}^{B}$. The expected total profit is therefore

$$
\begin{equation*}
E[\text { revenue }]-E[\text { cost }]=E[100 y]-E\left[c \times S_{100}^{B}\right]=100 y-\frac{100 c}{\lambda e^{-\frac{1}{\mu} y}} \tag{1}
\end{equation*}
$$

(d) Taking the first derivative of (1) with respect to y and setting it equal to 0 gives

$$
100-\frac{100 c}{\lambda \mu} e^{\frac{1}{\mu} y}=0
$$

Solving the above equation yields

$$
y^{*}=\mu \ln \left(\frac{\lambda \mu}{c}\right)
$$

Note that the second derivative of (1) with respect to y is

$$
-\frac{100 c}{\lambda \mu^{2}} e^{\frac{1}{\mu} y}<0
$$

and hence the above y^{*} is the unique optimal price. Now the optimal expected profit is obtained by substituting y^{*} into (1), i.e. the optimal expected profit is

$$
100 \mu \ln \left(\frac{\lambda \mu}{c}\right)-100 \mu
$$

3. Let $N^{R}(t)$ and $N^{G}(t)$ denote the number of arrivals by time t whose t-shirts are red and green, respectively. Also, let $\left\{T_{i}^{R}\right\}$ and $\left\{T_{i}^{G}\right\}$ denote the inter-arrival times of processes $\left\{N^{R}(t), t \geq 0\right\}$ and $\left\{N^{G}(t), t \geq 0\right\}$ respectively.
Since each time we have an arrival, everything starts over (each process is a Poisson process), we have the distribution of the inter-arrival times of process $\left\{N^{R}(t)+N^{G}(t), t \geq 0\right\}$ is the same as the distribution of $\min \left(T_{i}^{R}, T_{j}^{G}\right)$ which is exponential with rate $\lambda+\mu$.
4. See solutions for homework 11.
5. Let $N(t)$ denote the number of arrivals by time t of the Poisson process with rate $\lambda=2$.
(a) Note that $N(t+s)-N(t)$ is Poisson with mean λs.

$$
\begin{aligned}
P\{N(1)=0, N(10)-N(9)=0\}= & P\{N(1)=0\} \times P\{N(10)-N(9)=0\} \\
& \text { by independent increments } \\
= & \frac{e^{-\lambda \cdot 1}(\lambda \cdot 1)^{0}}{0!} \times \frac{e^{-\lambda \cdot(10-9)}(\lambda \cdot(10-9))^{0}}{0!} \\
= & e^{-2 \lambda}=e^{-4}
\end{aligned}
$$

(b) Recall that given $N(t)=n$, the arrival time of each of the first n arrivals is independent uniform $(0, t)$. So given $N(10)=5$, each of the first 5 arrivals independently arrives uniformly over $(0,10)$ (hence for each of these 5 arrivals, the probability that this arrival
arrives during the first hour is $1 / 10$, during the last hour is $1 / 10$, and after the first hour but before the last hour is $8 / 10$.) Thus,

$$
\begin{aligned}
P\{N(1) & =1, N(10)-N(9)=1 \mid N(10)=5\} \\
& =P\{N(1)=1, N(10)-N(9)=1, N(9)-N(1)=3 \mid N(10)=5\} \\
& =\frac{5!}{1!3!1!} \times \frac{1}{10} \times\left(\frac{8}{10}\right)^{3} \times \frac{1}{10}
\end{aligned}
$$

where the last line comes from multinomial distribution.
(c) Recall that for any two events A and B, we have $(A \cap B)^{C}=A^{C} \cup B^{C}, P\{A\}=1-P\left\{A^{C}\right\}$, and $P\{A \cup B\}=P\{A\}+P\{B\}-P\{A \cap B\}$.
Now

$$
\begin{align*}
P\{N(1) \geq & 1, N(10)-N(9) \geq 1 \mid N(10)=5\} \\
= & 1-P\{N(1)=0 \cup N(10)-N(9)=0 \mid N(10)=5\} \\
= & 1-(P\{N(1)=0 \mid N(10)=5\}+P\{N(10)-N(9)=0 \mid N(10)=5\} \\
& \quad-P\{N(1)=0, N(10)-N(9)=0 \mid N(10)=5\}) \\
& \quad 1-\left(\left(\frac{9}{10}\right)^{5}+\left(\frac{9}{10}\right)^{5}-\left(\frac{8}{10}\right)^{5}\right) \tag{2}
\end{align*}
$$

Alternatively, let the first 5 arrivals be A, B, C, D and E, and let S_{k} denote the arrival time of k for $k \in\{A, B, C, D, E\}, S_{\min }=\min \left(S_{A}, \ldots, S_{E}\right), S_{\max }=\max \left(S_{A}, \ldots, S_{E}\right)$. Now

$$
\begin{aligned}
& P\{N(1) \geq 1, N(10)-N(9) \geq 1 \mid N(10)=5\} \\
& \quad=\sum_{j \neq k \in\{A, \ldots, E\}} P\left\{N(1) \geq 1, N(10)-N(9) \geq 1, S_{j}=S_{\min }, S_{k}=S_{\max } \mid N(10)=5\right\} \\
& \quad=5 \cdot 4 \cdot P\left\{N(1) \geq 1, N(10)-N(9) \geq 1, S_{A}=S_{\min }, S_{B}=S_{\max } \mid N(10)=5\right\}
\end{aligned}
$$

by symmetry

$$
=20 \int_{0}^{1} P\left\{N(1) \geq 1, N(10)-N(9) \geq 1, S_{A}=S_{\min }, S_{B}=S_{\max } \mid N(10)=5, S_{A}=x\right\} \frac{1}{10} d x
$$

$$
=20 \int_{0}^{1} \int_{9}^{10} P\left\{N(1) \geq 1, N(10)-N(9) \geq 1, S_{A}=S_{\min }, S_{B}=S_{\max }\right.
$$

$$
\left.\mid N(10)=5, S_{A}=x, S_{B}=y\right\} \frac{1}{10} \cdot \frac{1}{10} d y d x
$$

$$
=20 \int_{0}^{1} \int_{9}^{10} P\left\{x \leq S_{C}, S_{D}, S_{E} \leq y \mid N(10)=5\right\} \frac{1}{10} \cdot \frac{1}{10} d y d x
$$

$$
=20 \int_{0}^{1} \int_{9}^{10}\left(\frac{y-x}{10}\right)^{3} \frac{1}{10} \cdot \frac{1}{10} d y d x
$$

Integrating the last equation gives the same result as in (2).

