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Midterm Solutions

1.
a. False. Linear programs can be infeasible or unbounded. Also, a linear program can have an optimal
solution, but no extreme point optimal solutions (i.e. max{x1 + x2 s.t. x1 + x2 = 1}).
b. True. Note that x = 0 is always a feasible solution, so this problem cannot be infeasible. Unbounded
and having an optimal solution are the only other choices.
c. False. If the optimal basic feasible solution is degenerate then we could have a non-basic variable with 0
reduced cost, but not be able to move in the direction specified by increasing that non-basic variable.
d. False. The definition of d being a direction of unboundedness is that we have d ≥ 0, d 6= 0, and Ad = 0.
This says nothing about what cd is.
e. False. If a basic solution is degenerate, then a basic variable could be equal to 0 as well.

2.
a. There are multiple possibilities for this question but the answer that was easiest to determine is:
a > 0, b > 0, e ≥ 0.
b. e = 0.
c. b < 0, c ≤ 0, e ≥ 0.
d. b = 0, c = 1, e ≥ 0.

3.
First, put the model into standard form with artificial variables (remember that since x3 is unrestricted to
replace it with x+

3 − x−3 ):

max 4x1 + 2x2 + 8x+
3 − 8x−3 − Ma1

s.t. 2x1 − x2 + 3x+
3 − 3x−3 + x4 = 30

x1 + 2x2 + 4x+
3 − 4x−3 + a1 = 40

x1, x2, x
+
3 , x−3 , x4, a1 ≥ 0

Tableau implementation of the big-M simplex method:

↓
z x1 x2 x+

3 x−3 x4 a1 RHS ratio
Row 0 1 −4 −2 −8 8 0 M 0
Row 0′ 1 −4−M −2− 2M −8− 4M 8 + 4M 0 0 −40M

0 2 −1 3 −3 1 0 30 −
0 1 2 4 −4 0 1 40 20

Note that x2 was chosen to enter because it is the most convenient variable to choose. x1 or x+
3 could also

have been chosen and you would eventually get to a feasible solution.

z x1 x2 x+
3 x−3 x4 a1 RHS

1 −3 0 −4 4 0 M + 1 40
0 5

2 0 5 −5 1 1
2 50

0 1
2 1 2 −2 0 1

2 20

We have driven a1 out of the basis, which implies that this tableau represents a feasible solution. The
solution described is x = (x1, x2, x

+
3 , x−3 , x4) = (0, 20, 0, 0, 50).
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4.
a.

It is not actually possible to model this problem via linear programming because of the piecewise linear cost
function. In general, you can model a piecewise linear function using linear programming if you are trying
to maximize a concave function or minimize a convex function. This problem you are trying to maximize a
piecewise linear convex function, which cannot be done via linear programming. Points were not taken off
for not correctly modeling the cost function. We looked to see if you could successfully model the other
constraints and we gave you 5 extra points if you chose to model the problem in the way we had intended
before we realized that you could not model the problem as an LP. Here is the model we had in mind:

Variables:
ti = number of toy i to produce
xj = number of hours to run line j
y = number of extra labor hours used

wk = amount of wood purchased at price point k

Formulation:

max 5t1 + 6t2 − 10y − 4w1 − 3w2 − 2.5w3

s.t. w1 + w2 + w3 = 4x1 + 5x2 (1)
t1 = x1 + 3x2 (2)
t2 = 2x1 + x2 (3)

x1 + x2 ≤ 300 + y (4)
y ≤ 50 (5)

w1 ≤ 800 (6)
w2 ≤ 200 (7)

all variables ≥ 0

The objective maximizes total profit, which is revenue minus costs. Constraint 1 gives the relationship
between the total wood purchased and the total wood needed to run the two lines. Constraints 2 and 3
indicate how much we get of each toy by running the two lines. Constraint 4 ensures that we stay within
the 300 regular labor hours or if we do go over that the penalty term y is increased. Constraints 5, 6, and 7
place appropriate bounds on y, w1, and w2 respectively. Finally, all of our variables must be non-negative.

b.
There are obviously many feasible solutions to this model. One possible solution is to set all variables equal
to 0, which results in an objective value of 0.
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