1. (a), (b), (c)

(d)

$$
\left(X_{1}, X_{2}, e_{1}, e_{2}, e_{3}\right)=(2,6,12,0,0)
$$

$$
Z=3 \times 2+5 \times 6=36
$$

(e)

The optimal solution changes when the slope of the iso-profit line is steeper than constraint C .

Figure shows a Case where the slope is steeper
than constraint C and the solution changes.

Slope of Constraint $\mathrm{C}=-1$
Let $\quad C_{1}=$ Coefficient for X_{1} $C_{2}=$ Coefficient for X_{2}
C_{1} Remaining Constant, we can see that with $C_{2} \geq 3$-- solution still remains optimal. $\Rightarrow 3 \leq C_{2} \leq \infty$
(f)

Since A is not a binding constraint - the Shadow Price is $\mathbf{0}$.

To find the maximum RHS for A, we need to know the RHS value for which A will be a Binding Constraint - which will change the basis and hence the solution.
Hence we need to find the equation for the line $\mathbf{A}_{\text {new. }}$
The value of the RHS of $\mathbf{A}_{\text {new }}$ must be such that $\mathbf{A}_{\text {new }}$ passes through the optimal point (2, $6)$.

Using this Information, we can find the equation of line $\mathbf{A}_{\text {new }} \Rightarrow x_{1}+5 x_{2}=32$
\Rightarrow The maximum RHS value for A is 32 .
As in the figure above, the Lower Limit for the RHS is $-\infty$, as the solution/basis is not affected on decreasing the RHS for A.
(g)

The Shadow Price of a constraint is by how much the value of the objective function is increased (for a maximization problem) or decreased (for a minimization problem), if we change the RHS of that constraint by 1 unit, keeping in mind that the set of binding constraints remains unchanged.
Hence, let us change the RHS of constraint B by λ

Solving the inequalities: -

$$
\begin{aligned}
& X_{1}+X_{2}=8 \\
& -3 X_{1}+2 X_{2}=6+\lambda
\end{aligned}
$$

We get,

$$
\begin{aligned}
X_{2} & =6+\frac{\lambda}{5} \\
X_{1} & =2-\frac{\lambda}{5}
\end{aligned}
$$

Hence,

$$
Z=36+\frac{2 \lambda}{5}
$$

As this is a Minimization Problem, the Objective Function decreases by $\frac{2}{5}$
Hence Shadow Price for B is $\frac{-2}{5}$

Figure shows the Range in which the RHS of Constraint B can vary, without changing the optimal basis.

Equation of the Upper Limit line -UL is $-3 x_{1}+2 x_{2}=-3 \times(0)+2 \times(8)=16$ Equation of the Lower Limit Line - LL is $-3 x_{1}+2 x_{2}=-3 \times(5)+2 \times(3)=-9$

Hence, Max RHS value for B is $\mathbf{1 6}$, and Min RHS value is $\mathbf{- 9}$.
(a)

Cars 88
Trucks 27.6
Type 1 Machines 98
Profit 32540
(b)

Cars 88
Trucks 27.6
Type 1 Machines 98
Profit $\quad 32540-20(27.6)=31988$
(c)

$$
\begin{aligned}
\text { Profit } & =\text { Old Profit }+(\text { Shadow Price for the Constraint })(\text { Change in Cars Produced }) \\
& =32540+(-20)(86-88) \\
& =32580
\end{aligned}
$$

(d)

They should not pay anything, and they should not buy any more steel, since they do not use all the available steel (the constraint is not binding).
(e)

Carco should not rent the Machine.
The Shadow Price of Machine 1 Constraint is $\$ 350$, which means the profit will go down by $\$ 350$ if the Machine is rented out, whereas in return earnings will be only $\$ 250$ hence, there will be a net loss of $\$ 100$.

3.

Decision variables

Amount of a Particular Material used to form a product of a particular Grade.
Material Types - 1, 2, 3
Product Grades - A, B

$$
\begin{aligned}
& X_{1 A}=1 \rightarrow A \\
& X_{2 A}=2 \rightarrow A \\
& X_{3 A}=3 \rightarrow A \\
& X_{1 B}=1 \rightarrow B \\
& X_{2 B}=2 \rightarrow B \\
& X_{3 B}=3 \rightarrow B
\end{aligned}
$$

Selling Price

Objective Function: Maximize Weekly Profit
$Z=\left\{8.5\left(X_{1 A}+X_{2 A}+X_{3 A}\right)+5.5\left(X_{1 B}+X_{2 B}+X_{3 B}\right)\right\}-\left\{3\left(X_{1 A}+X_{2 A}+X_{3 A}\right)+2\left(X_{1 B}+X_{2 B}+X_{3 B}\right)\right\}$

Subject to:

$\frac{X_{1 A}}{X_{1 A}+X_{2 A}+X_{3 A}} \leq 0.3$
$\frac{X_{2 A}}{X_{1 A}+X_{2 A}+X_{3 A}} \geq 0.4$
$\frac{X_{3 A}}{X_{1 A}+X_{2 A}+X_{3 A}}=0.2$

$\frac{X_{1 B}}{X_{1 B}+X_{2 B}+X_{3 B}} \leq 0.7$$\quad$| Proportion |
| :--- |
| Constraints |
| of materials |
| in a Product |
| Grade |\quad| Treatment |
| :--- |
| Cost |
| $0.7 X_{1 A}-0.3 X_{2 A}-0.3 X_{3 A} \leq 0$ |
| $-0.4 X_{1 A}+0.6 X_{2 A}-0.4 X_{3 A} \geq 0$ |
| $-0.2 X_{1 A}-0.2 X_{2 A}+0.8 X_{3 A}=0$ |
| $0.3 X_{1 B}-0.7 X_{2 B}-0.7 X_{3 B} \leq 0$ |

$$
\left.\begin{array}{l}
X_{1 A}+X_{1 B} \leq 3000 \\
X_{2 A}+X_{2 B} \leq 2000
\end{array}\right\} \quad \begin{aligned}
& \text { Material } \\
& \text { Availability }
\end{aligned}
$$

$$
X_{3 A}+X_{3 B}^{2 D} \leq 1000 \int \text { Constraints }
$$

$$
X_{1 A}+X_{1 B} \geq 1500
$$

$$
X_{2 A}+X_{2 B} \geq 1000 \succ \text { "At least half of the amount available for each material is }
$$

$$
X_{3 A}+X_{3 B} \geq 500 \int \text { collected and treated" - i.e. lower Bound Constraint }
$$

$$
3\left(X_{1 A}+X_{1 B}\right)+6\left(X_{2 A}+X_{2 B}\right)+4\left(X_{3 A}+X_{3 B}\right) \leq 30000
$$

Green Earth's contribution and Grants - constraint
All variables ≥ 0
4.

Let

$$
\begin{aligned}
& \alpha=\operatorname{Max}\left\{X_{1}-2, X_{1}+3 X_{2}-6\right\} \\
& \mu=\left|X_{1}-X_{2}\right|
\end{aligned}
$$

$\operatorname{Min}_{Z=\alpha}$
Such that

$$
\begin{aligned}
& \alpha \geq X_{1}-2 \\
& \alpha \geq X_{1}+3 X_{2}-6 \\
& X_{1}-X_{2} \leq 3 \\
& X_{2}-X_{1} \leq 3 \\
& X_{2} \leq 4
\end{aligned}
$$

