Operations Research II, IEOR161
 University of California, Berkeley Midterm Exam II Suggested Solutions, 2009

1. (a) The states are:

- $(2,0)$: Both machines are operational
- (1,0): One machine operational, one machine down but hasn't had any repairs done
- $(1,1)$: One machine operation, one machine has had one day's worth of repairs done
- $(0,1)$: Both machines down, one machine has been repaired for one day so far.
(b) Let the states be in the order listed above. Then the transition probability matrix is

$$
P=\left[\begin{array}{cccc}
1-p & p & 0 & 0 \\
0 & 0 & 1-p & p \\
1-p & p & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

(c)

$$
\begin{aligned}
\pi_{(2,0)} & =(1-p) \pi_{(2,0)}+(1-p) \pi_{(1,1)} \\
\pi_{(1,0)} & =p \pi_{(2,0)}+p \pi_{(1,1)}+\pi_{(0,1)} \\
\pi_{(1,1)} & =(1-p) \pi_{(1,0)} \\
\pi_{(0,1)} & =p \pi_{(1,0)} \\
\pi_{(2,0)}+\pi_{(1,0)}+\pi_{(1,1)}+\pi_{(0,1)} & =1
\end{aligned}
$$

2.

$$
\pi_{1}=\frac{3}{7}, \pi_{2}=\frac{1}{4}, \pi_{3}=\frac{9}{28}
$$

3. Note that $\mathbb{E}\left[\sum_{j=1}^{N(T)} S_{j}\right]=\mathbb{E}\left[\mathbb{E}\left[\sum_{j=1}^{N(T)} S_{j} \mid N(T)\right]\right]$. Now,

$$
\begin{align*}
\mathbb{E}\left[\sum_{j=1}^{N(T)} S_{j} \mid N(T)=n\right] & =\mathbb{E}\left[\sum_{j=1}^{n} S_{j} \mid N(T)=n\right] \\
& =\sum_{j=1}^{n} \mathbb{E}\left[S_{j} \mid N(T)=n\right] \\
& =\sum_{j=1}^{n} \mathbb{E}[U] \tag{1}\\
& =n \mathbb{E}[U] \tag{2}\\
& =n \frac{T}{2} \tag{3}
\end{align*}
$$

Where $U \sim \operatorname{Uniform}(0, T)$. Line (1) follows from the fact that given we know that n arrivals occurred in $[0, T]$ according to a Poisson process, the arrival times S_{j} are distributed according to a uniform random variable on $[0, T]$. Now we uncondition on the value of $N(T)$:

$$
\begin{aligned}
\mathbb{E}\left[\mathbb{E}\left[\sum_{j=1}^{N(T)} S_{j} \mid N(T)\right]\right] & =\mathbb{E}\left[N(T) \frac{T}{2}\right] \\
& =\frac{T}{2} \mathbb{E}[N(T)] \\
& =\frac{\lambda T^{2}}{2}
\end{aligned}
$$

4. Given that these events have already occurred, if we measure time by the hour, the arrival time of each event is distributed according to a uniform random variable on $(0,1)$. The probability of one arrival coming between $12: 15 \mathrm{pm}$ and $12: 45 \mathrm{pm}$, or the interval $\left(\frac{1}{4}, \frac{3}{4}\right)$, is $\frac{\frac{3}{4}-\frac{1}{4}}{1}=\frac{1}{2}$. Therefore, the probability of eight arrivals occurring in this time is $\left(\frac{1}{2}\right)^{8}$.
