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1. (a) The states are:

e (2,0): Both machines are operational

e (1,0): One machine operational, one machine down but hasn’t had any repairs
done

e (1,1): One machine operation, one machine has had one day’s worth of repairs
done

e (0,1): Both machines down, one machine has been repaired for one day so far.

(b) Let the states be in the order listed above. Then the transition probability matrix
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Where U ~ Uniform(0,7"). Line (1) follows from the fact that given we know that
n arrivals occurred in [0,7] according to a Poisson process, the arrival times S; are

distributed according to a uniform random variable on [0,7]. Now we uncondition on
the value of N(T):
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4. Given that these events have already occurred, if we measure time by the hour, the
arrival time of each event is distributed according to a uniform random variable on

(0,1). The probability of one arrival coming between 12:15pm and 12:45pm, or the

3_1
interval (i, %), is A4 = % Therefore, the probability of eight arrivals occurring in this

time is (%)8.



