Chemistry 112A, Midterm 2

Student name: \qquad
Student signature:
Write TA's full name (section number) or Lecture Only: \qquad

1. Please make sure that the exam has 8 pages including this one.
2. Please write your answers in the spaces provided.
3. Write clearly; illegible or ambiguous answers will be considered incorrect.
4. Only writing implements are allowed (No Calculators).

GOOD LUCK!

1. $\quad 60$ points \qquad
2. $\quad 25$ points \qquad
3. $\quad 10$ points \qquad
4. $\quad 34$ points \qquad
5. $\quad 25$ points
6. $\quad 14$ points \qquad
7.

7 points
Total 175 points

MINI-PERIODIC TABLE

I	II	III	IV	V	VI	VII	VIII
H							He
Li	Be	B	C	N	O	F	Ne
Na	Mg	Al	Si	P	S	Cl	Ar
K	Ca	Ga	Ge	As	Se	Br	Kr

1. Answer the following questions. Every wrong answer cancels a correct answer (60 points).
(a). Circle the cyclohexane derivative(s) thatis (are) in the lowest energy conformation(6 points):

(b). Number the nucleophiles from 1 to 4 based on the highest to lowest $E 2$ to $S_{N} 2$ ratio obtained upon reaction with propyl bromide [1 = most E2] (6 points).

(c). Circle the reagents below that would produce a chiral product upon reaction with E-2-butene \{see structure in box] (6 points)
2. BH_{3}

Br_{2}

(d). Number the nucleophiles that provide the fastest to slowest $S_{N} 2$ reaction with methanol as solvent [1 = fastest $\mathbf{S}_{\mathbf{N}} 2$] (6 points).

$H_{F}{ }^{\ominus}$
$2 \mathrm{Br}{ }^{\ominus}$
$1 I^{\ominus}$
(e). Circle the alkyl halide(s) below that would undergo an $\mathbf{S}_{\mathbf{N}} 2$ reaction less rapidly than isopropyl

(f). Ciretathe compound(s) that is (are) chiral (6 points).

(g). Circle the correct statement(s) (6 points).

3. If two compounds are stereoisomers, then at least one of the compounds must be chiral.
(h). Circle the alkenes) listed below that upon reaction with HCl would give a chiral product rather than an achiral product (6 points).

(i). Circle the asymmetric carbons) that has (have) an (S)-configuration (6 points).

(j). Circle the halides) listed below that upon heating in methanol would undergo a reaction by an $\mathbf{S}_{\mathbf{N}} 1 / \mathrm{E} 1$ mechanistic pathway (6 points)

4. For each of the following reactions supply the missing starting materials, reagents, or major organic products) in the space provided. Show the stereochemistry of the product. If the product is chiral indicate whether or not it is racemic (25 points total).
(a)

$\mathrm{H}_{2} \mathrm{O}, \Delta$

(b)

$\mathrm{D}_{2}, \mathrm{Pt}$

(c)

$\mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{O}$
(\pm

(d)

(e)

5. You have been given bottles of diastereomeric alkyl chlorides (structures shown in box). Based upon the illustrated chemical reactions, assign which structure is Diastereomer A and which structure is Diastereomer B. Using the mechanism for the E2 reaction, show how you assigned the stereochemistry (10 points).

6. For each of the following stereoisomer pairs, assign the isomeric relationship, i.e., diastereomeric, enantiomeric, or identical (includes conformational). In addition, circle all of the compounds that are chiral (34 points).
(a)
(b)

 identical
(c)

enantiomers
(d)
(e)

(f)
(g)

diastereomers
d'iastereomers
(h)

diastereomers
(i)

diastereomens
engntiomers

5a. Draw all of the possible isomers of dichlorocyclopentane (five-carbon ring with two chlorines attached). List enantiomers, but points will be marked off for writing the same structure twice (13 points).

5b. Assign the absolute configuration for each asymmetric carbon (12 points).

6. Upon heating the below illustrated alkyl chloride in water, the alcohol shown is produced as one of the major products. Provide a mechanism for its formation (14 points).

(\pm)

7. Rank the constitutional isomers listed below based upon heat of formation ($1=$ largest ΔH_{f}^{0}, ie., requires the most energy to formally produce from the elements in their standard states). Briefly explain your ranking (7 points).

