Section 1: Multiple Choice. 12 questions, 3 points each.

Instructions: For the following questions, circle the answer on the exam sheet **and** bubble in the correct answer on your Scantron sheet. There is **only one** correct answer per problem, so for each question **fill in one bubble on your Scantron form.**

- 1.) You are taking test version A. Please fill in bubble "A" on your Scantron sheet.
- 2.) Given a constant CO₂(g) pressure of 1 atm over a vessel of water, which of the following will not increase the equilibrium concentration of CO₂(aq) in the water? Note: CO₂(g) dissolving in water is an exothermic process.
 - A) Decrease the temperature of the water.
 - **B)** Increase the amount of water.
 - C) Increase the pH.
 - **D)** Increase the partial pressure of $CO_2(g)$ from 1 atm to 2 atm.
 - E) All will increase the concentration.
- 3.) Which of the following pairs will undergo a spontaneous oxidation/reduction reaction?

A)
$$Zn(s)$$
, Cd^{2+}
B) $Ag(s)$, Cd^{2+}
C) Li^+ , Br^-
D) Zn^{2+} , Au^+
E) $Ag(s)$, Ag^+

4.) For which process or reaction is ΔS° expected to be positive?

A)
$$I_2(g) \longrightarrow I_2(s)$$

B) $CO_2(g) + 2 H_2O(\lambda) \longrightarrow H_3O^+(aq) + HCO_3^-(aq)$
C) $CH_3OH(g) + 3/2 O_2(g) \longrightarrow CO_2(g) + 2 H_2O(g)$
D) $O_2(g) + SO(g) \longrightarrow SO_3(g)$
E) $2 Mg(s) + CO_2(g) \longrightarrow 2 MgO(s) + C(s)$

- **5.)** A Zn | Zn²⁺ || Co²⁺ | Co galvanic cell is constructed in which the standard cell voltage, $\Delta \varepsilon^{\circ}$, is 0.48 V. What is the free energy change at 25 °C (in kJ) per mole of Zn lost at the anode, if all concentrations remain at 1.0 M throughout the process?
 - A) -6053 B) -92.6 C) -46.3 D) 46.3 E) 92.6
- 6.) Which of the following *cannot* occur at the same time?

A) $\Delta S_{sys} > 0$ and $\Delta S_{surr} < 0$ B) $\Delta S_{sys} = 0$ and $\Delta S_{surr} > 0$ C) $\Delta S_{sys} < 0$ and $\Delta S_{surr} > 0$ D) $\Delta S_{sys} > 0$ and $\Delta S_{surr} > 0$ E) All of these can occur at the same time.

Page 3 of 10.

Name:

7-10. In the next four problems, choose which of the following five graphs best describes the behaviors listed below.

- 7.) Energy of a photon as a function of its wavelength.
- **8.)** Mass of Mg(OH)₂(s) precipitate (K_{sp} =5.6x10⁻¹²) in water as a function of moles of strong acid added.
- **9.)** $\ln(K)$ as a function of $\frac{1}{T}$ for an **endothermic** reaction.
- 10.) $\Delta \mathbf{\mathcal{E}}^{\circ}$ for the cell Zn|Zn²⁺||Ag⁺|Ag as a function of the mass of the Ag electrode used. Assume that $[Zn^{2+}] = [Ag^+] = 1.0 \text{ M}.$
- 11-12. Answer the next two problems using the following five choices:
 - A) Spontaneous at all temperatures.
 - **B)** Spontaneous at no temperature.
 - C) Spontaneous at low temperatures, but not at high temperatures.
 - D) Spontaneous at high temperatures, but not at low temperatures.
 - E) Spontaneous only at 100° C.
- **11.)** $2 H_2(g) + O_2(g) -----> 2 H_2O(g).$ ($\Delta H^{\circ} < 0; \Delta S^{\circ} < 0$)
- **12.)** $C_6H_{12}O_6(s) + 6 O_2(g) 6 H_2O(g) + 6 CO_2(g).$ ($\Delta H^{\circ} < 0; \Delta S^{\circ} > 0$)
- **13.)** For the vaporization of bromine, $Br_2(\lambda) \bigsqcup Br_2(g)$, $\Delta H^\circ = 31 \text{ kJ-mol}^{-1}$ and $\Delta S^\circ = 93 \text{ J-mol}^{-1} \cdot \text{K}^{-1}$. Assuming that ΔH° and ΔS° are invariant with temperature, what is the boiling point of $Br_2(\lambda)$?

A) 298 K B) 300 K C) 333 K D) 373 K E) Can't determine.

Page 4 of 10.

Name:

Section 2: What's Wrong. 4 questions, 6 points each.

For this section, in no more than twenty words per response, **explain** what is wrong with the following pictures. **Note: only the first 20 words of each answer will be read!**

1.) A galvanic cell which utilizes the potential difference between Au and Ag:

2.) For the photoionization of a metal:

3.) For the addition of AgCl(s) to 100 mL of water:

4.) For the following two systems of gas molecules:

Page 5 of 10.

Name: _____

Section 3: Short Answer. 5 questions, 65 points total.

Answer the following five short answer questions. Partial credit will be given, so show your work whenever possible. Your final answers **must** be written in the boxes provided.

- **1.)** (12 points) Up to 0.0432 grams of silver dichromate (Ag₂Cr₂O₇; MW=432 g•mol⁻¹) will dissolve in 1.00 L of water at 25° C to form Ag⁺ and Cr₂O₇²⁻.
 - **a.**) Calculate the solubility product constant, K_{sp} , for silver dichromate at 25° C.

b.) Suppose AgNO₃(s), which dissociates completely, is added to the above solution until the Ag⁺ concentration reaches 0.10 M. How many grams of Ag₂Cr₂O₇(s) precipitate will form? Assume the volume remains 1.00 L.

Page 6 of 10.

Name: _____

2.) (12 points) Consider a monatomic ideal gas at a volume of 2 L which is held at constant temperature. The gas is reversibly compressed using a piston until it reaches a volume of 1 L.

For each quantity below, indicate (by checking the box) whether it is =0, >0, or <0 for the overall isothermal compression process.

Quantity	= 0	> 0	< 0
ΔP _{sys}			
ΔV _{sys}			
ΔT _{sys}			
Δn _{sys}			
W			
q			
ΔE _{sys}			
ΔE _{surr}			
ΔE _{tot}			
ΔS _{sys}			
ΔS _{surr}			
ΔS _{tot}			

Page 7 of 10.

Name:

- **3.**) (15 points) For a lecture demo, Lonnie creates a galvanic cell by placing a cadmium electrode in a 1.0 M solution of cadmium nitrate (Cd(NO₃)₂) and a titanium electrode in a 1.0 M solution of titanium nitrate (Ti(NO₃)₃), both at 25° C. To complete the circuit, the solutions are connected by a salt bridge and the electrodes are connected by a wire.
 - **a.)** Lonnie measures the voltage across the cell and determines it to be 1.60 V. He also notices that the titanium electrode is growing larger. What is the standard reduction potential, ε° , for Ti³⁺ [Ti³⁺ + 3e⁻ ----> Ti(s)]?

b.) Into which solution are the **negative** ions from the salt bridge flowing? Explain your answer.

c.) At the Tuesday lecture, Head TA Dave Laws tries to set up the galvanic cell, but accidentally spills a large amount of distilled water into one of the solutions. This causes the voltage measured to be **higher** than 1.60 V. Which solution did Dave accidentally spill the water into? Explain your answer.

Page 8 of 10.

Name:

4.) (11 points) A student is doing a research project on the thermodynamics of dissolving sucrose, $C_{12}H_{22}O_{11}$, in water according to the equation:

$$C_{12}H_{22}O_{11}(s)$$
 $C_{12}H_{22}O_{11}(aq)$

In her first experiment, the student takes 34.2 g of sucrose (MW=342 g•mol⁻¹) and completely dissolves it in 1.00 L of water inside a calorimeter which is initially at 25.0 °C. Once the sucrose is dissolved, she measures the temperature to be 24.5 °C.

a.) What is the enthalpy change, ΔH , in kJ•mol⁻¹ for this process? Remember that for a calorimeter, you can use the equation: $q = -mC_p\Delta T$, where the specific heat for water, $C_p = 4.184 \text{ J} \cdot \text{g}^{-1} \cdot \text{K}^{-1}$.

b.) How many grams of sucrose would the student have to dissolve in 1.00 L of water in order to lower the temperature from 25.0 °C to 23.5 °C?

c.) Based on your answer to part (a), would you predict the K for the dissolution of sucrose in 50 °C water to be larger, smaller, or the same as the K for the dissolution of sucrose in 25 °C water? Explain your answer in 20 words or less.

Page 9 of 10.

- **5.)** (15 points) Two metals, metal A and metal B, are irradiated with green light at 500 nm. Metal A ejects an electron with a speed of 5.0×10^5 m·s⁻¹, while metal B ejects an electron with a speed of 3.4×10^5 m·s⁻¹.
 - **a.**) Which metal, A or B, has the larger work function, Φ ? Explain your answer.

b.) If you wanted to eject an electron from metal B with exactly twice (2x) the kinetic energy as in part **a.**), which of the following light sources might be used? Circle your answer and explain your reasoning in 20 words or less.

Light Source:Operating Wavelengths:

Krypton-Fluorine laser: ≤250 nm

Pulsed dye laser 250 nm to 500 nm

Argon ion laser: 500 nm to 1100 nm

c.) If metal A is silver, which of the following could be metal B? Circle your answer and explain your reasoning in 20 words or less. **Hint:** think of ejecting an electron as an *oxidation* process.

 ${\rm Gold}$

Lithium

Half Reaction	ε° (V)
Au ⁺ + e ⁻ > Au(s)	1.68
$Br_2(\lambda) + 2e^> 2 Br^-$	1.07
$Ag^+ + e^ Ag(s)$	0.80
$2 H+ + 2e^{-}> H_2(g)$	0.00
$Cd^{2+} + 2e^{-}> Cd(s)$	-0.40
$Zn^{2+} + 2e^{-}> Zn(s)$	076
$Mg^{2+} + 2e^{-}> Mg(s)$	-2.38
$Li^{+} + e^{-}> Li(s)$	-3.05

Possibly Useful Information

$S = k_B ln \Omega$	Absolute $T(K) = T(^{\circ}C) + 273.15$
$\Delta H_{sys} = q = nC_p\Delta T$ at constant pressure.	PV = nRT
$\Delta G = \Delta H - T \Delta S$	$\Delta H_{\text{form}}^{\circ} = \Delta H_{\text{products}}^{\circ} - \Delta H_{\text{reac tan ts}}^{\circ}$
$\Delta G^{\circ} = -RTlnK$	$R = 0.0821 \text{ L} \bullet \text{atm} \bullet \text{mol}^{-1} \bullet \text{K}^{-1}$
$\Delta G = \Delta G^{\circ} + RT \ln Q$	$R = 8.31 J \cdot mol^{-1} \cdot K^{-1}$
$\Delta S_{sys} = nR \ln \frac{V_2}{V_1}$	Chemistry is fun.
$\Delta S_{tot} = \Delta S_{sys} + \Delta S_{surr}$	$E = \frac{hc}{\lambda}$
$\Delta E_{tot} = \Delta E_{sys} + \Delta E_{surr}$	$E_{electron} = E_{photon} - \Phi$
$\Delta \mathbf{E} = \mathbf{q} + \mathbf{w}$	$E_{\text{kinetic}} = \frac{mv^2}{2}$
$w = -P_{ext}\Delta V$	$\Delta H = \Delta E + \Delta (PV)$
$\Delta S_{surr} = -\frac{q_{rev}}{T}$	$\ln K = -\frac{\Delta H^{\circ}}{R} \left(\frac{1}{T}\right) + \frac{\Delta S^{\circ}}{R}$
$\Delta G^{\circ} = -nF\Delta \mathbf{\mathcal{E}}^{\circ}$, where F=96,485 C • mol ⁻¹	