KEY

Chem 1A First Midterm Examination February 7, 2005 Professor David Chandler

1		
2	Name:	
3		
4	Signature:	
5		
6	Section:	
7		
8	CSI	
9	051	
10		
Extra		

Instructions

As indicated, either fill in blank space with appropriate symbol or number or circle the correct answer(s). Some multiple choice questions may have more than one correct answer, in which case all correct answers are required for full credit.

Use back of pages for your scratch work.

Physical constants you may need:

N₀ (Avogadro's #) = $6.022 \times 10^{23} \text{ mol}^{-1}$ 1 angstrom (Å) = $10^{-10} \text{ m} = 100 \text{ pm}$ Speed of light = $3.0 \times 10^8 \text{ m/s}$ H (Planck's constant) = $6.626 \times 10^{-34} \text{ J} \cdot \text{sec}$ Ionization Potential of H = $2.18 \times 10^{-18} \text{ J}$ 0 K = -273.15°C

10 pts	1.	For an experiment in lab, a student reacts baking soda (NaHCO ₃) with 6.00 M vinegar (CH ₃ COOH) to produce carbon dioxide (CO ₂) plus sodium acetate (NaCH ₃ COO) and water (H ₂ O). If 0.9864 g of NaHCO ₃ is reacted with 1.50 mL of vinegar, how many moles of CO ₂ will be produced?				
		A) 1.17×10 ⁻²	B) 9.00×10 ⁻³	C) 0.396 D) 6.0	0 E) 9.00	
3 pts	2.	(a) An expected empi	rical formula for a o	compound of Mg and O	is	
		A) Mg ₂ O	B) MgO	C) MgO ₂	D) Mg ₂ O ₃	
3 pts		(b) Similarly, a comp	ound of Li and H			
		A) is LiH	B) is LiH ₂	C) doesn't exist	D) is Li_2H	
4 pts		(c) Which of the follo	owing is <u>NOT</u> expec	eted to be a stable compo	ound	
		A) FeO	B) Fe ₂ O ₃	C) NaOH	D) Ca(OH) ₃	
6 pts	3.	A single K ⁺ ion contains (B) 18 electrons, (C) 19 protons and mos probably (D) 20 neutrons. (Fill in all three blanks)				
		A) 17	B) 18	C) 19	D) 20	
4 pts	4.	The typical size of an	atom is			
		A) 10 ⁻⁸ cm	B) 10 ⁻⁸ km	C) 10 ⁻⁸ m	D) 1000 nm	
4 pts	5.	Which of the followin vigorously?	ng equations represe	ents the reaction which o	ccurs <u>least</u>	
		A. $Be(s) + 2I$	HNO_3 (aq) $\rightarrow Be(N)$	$(O_3)_2 (aq) + H_2(g)$		
		$B. \qquad Ca(s) + 2F$	$\mathrm{INO}_3\left(\mathrm{aq}\right) \rightarrow \mathrm{Ca}(\mathrm{N})$	$(O_3)_2 (aq) + H_2(g)$		
		C. $Ba(s) + 2H$	$HNO_3(aq) \rightarrow Ba(N)$	$(O_3)_2 (aq) + H_2(g)$		

10 pts	6) .	A 0.5 g sample of an unknown acid is neutralized with 20 ml of .25 M NaOH (aq). Assuming the acid has two acidic protons per molecule, the molecular mass of the acid is				
	A	A)	25 g/mol	B) 50 g/mol	C) 75 g/mol	D) 100 g/m	el E) 200 g/mol
4 pts	7	7.	Small quanti	ties of chlorine gas	can be prepare	ed by the following	g reaction
			a M	$InO_2(s) + b$ HCl (aq	$) \rightarrow c \operatorname{MnCl}_2($	$(aq) + d \operatorname{Cl}_2(g) + e$	H ₂ O (l)
			where <i>a, b, c</i> reaction is	<i>e, d, e</i> are the stoiching	ometric coeffi	cients. The ratio a	a/b for the balanced
			A) 1/2	B) 1/	3	C) 1/4	D) 2/3
	8	8.	The volume	of 1 mole of solid N	Je is: V = 13.2	cm ³	
6 pts			(a) E	stimate the radius o	f a Ne atom, f	Ne	
ł	$if the vol V_{atom} = -\frac{1}{6}$	<i>lun</i> 13 5.02	$\frac{1}{2cm^3} = 2.1$	of atoms is 13.2 cm 9×10^{-23} cm	ı ³ , then we ca	n just solve for the	e volume of 1 atom

the cube root will be the diameter of one atom in cm diameter_{atom} = $\sqrt[3]{2.19 \times 10^{-23}} = 2.8 \times 10^{-8} cm$

the diameter is 2 * radius, so the radius is 1.4×10^{-8} cm or 1.4 Å

1.4 Å

[Show work and put estimate in box]

4 pts

(b) The distance between the centers of nearest neighbor oxygen atoms in ice is:

A. roughly the same as r_{Ne}

B. roughly the same as $2r_{Ne}$

C. smaller than $r_{\mbox{Ne}}$

4 pts		(c)	The space filling radius of the F ion is:
			A. roughly the same as \mathbf{r}_{Ne} B. about 1Å larger than \mathbf{r}_{Ne}
			C. about 1Å smaller than \mathbf{r}_{Ne}
4 pts		(d)	The F-F bond length of the F ₂ molecule is:
			A. roughly the same as $2r_{Ne}$ B. about 1Å larger than $2r_{Ne}$
			C. about 1Å smaller than $2r_{Ne}$
4 pts		(e)	The closest distance between F atoms of different F_2 molecules in solid F_2 is:
			A. roughly the same as $2r_{Ne}$ B. about 1Å larger than $2r_{Ne}$
			C. about 1Å smaller than $2r_{Ne}$
4 pts	9.	(a)	According to the uncertainty principle, determining the location of a particle to some high accuracy:
			A. is made possible by lowering the energy of the particle so as not to disturb it
			B. forces the energy of the particle to be large
			C. can never be accomplished
4 pts		(b)	The fact that light diffracts:
			A. demonstrates that light is composed of photons with particle- like properties
			B. demonstrates that light has wave-like properties
			C. implies an uncertainty in the wavelength of a photon

4 pts

(c) A typical x-ray wavelength is:

8 pts

5 pts

(d) Imagine that an electron is confined to a sphere of radius 0.5 Å. In its lowest energy state, kinetic energy of the electron is on the order of:

A)
$$10^{-13}$$
 J B) 10^{-18} J C) 10^{-23} J D) 10^{-27} J

- 10. Given the diagram for the electronic energy levels of hydrogen atom, answer the two questions below.
- (a) Suppose that you shine light of energy 0.75 $R_{\rm H}$ on an H atom in the ground state. What happens to the light and to the electron? ($R_{\rm H}$ is 2.179×10⁻¹⁸ J/atom)
- A) The light is absorbed and the final energy of the electron is $-0.20 R_{\rm H}$.
- B) The light is absorbed and the final energy of the electron is $-0.25 R_{\rm H}$.
- C) The light is absorbed and the final energy of the electron is $-0.80 R_{\rm H}$.
- D) The light is not absorbed and the final energy of the electron is $-1.00 R_{H}$.

Atomic Energy Levels for Hydrogen

5 pts (b) What wavelength of light (nm) will be emitted by an excited hydrogen atom when an electron relaxes from the n=4 to the n=2 level?

A) 954 B) 656 C) 486 D) 434 E) 410

Extra Credit: 10 pts

10. An electron bound in an atom is photo ionized with an x-ray of wavelength $\lambda = 2.2 \text{\AA} = 2.2 \times 10^{-10} \text{m}$. The kinetic energy of the ionized electron is measured to be 1.1×10^{-16} J. With what energy is the electron bound before it is ionized? (Hint: Conservation of energy, the photon energy and the electron's final kinetic energy provide the information you need for your answer)

 $KE_{(electron)} = hv - w$ or $KE_{(electron)} = E_{photon} - binding \, energy$ or equivalent

convert E_{photon} to joules E = hv, $c = \lambda v$, $E = hc/\lambda$

$$E_{photon} = \frac{(6.626 \times 10^{-34} \text{ Js}) \times (3.00 \times 10^8 \text{ m/s})}{2.2 \times 10^{-10} \text{ m}} = 9.0 \times 10^{-16} \text{ J}$$

binding energy = $KE_{(electron)} - E_{photon}$

binding energy = $1.1 \times 10^{-16} J - 9.0 \times 10^{-16} J = 7.9 \times 10^{-16} J$

7.9×10⁻¹⁶J

[Show your work and put answer in box]