Part 1: Multiple Choice.

(5 pts each, 145 pts total)
Instructions: Bubble in the correct answer on your Scantron ${ }^{\text {TM }}$ form AND circle the answer on your exam. Each question has one correct answer.
1.) The answer to question 1 is \mathbf{A}. Bubble in \mathbf{A} on your S cantron ${ }^{\text {TM }}$ form.
2.) Hydrogen has two stable isotopes, ${ }^{1} \mathrm{H}$ and ${ }^{2} \mathrm{H}$, and nitrogen has two stable isotopes, ${ }^{14} \mathrm{~N}$ and ${ }^{15} \mathrm{~N}$. Which isotopic species of ammonia will give a peak at mass 19 in a mass spectrometer?
A.) ${ }^{14} \mathrm{~N}^{1} \mathrm{H}_{2}{ }^{2} \mathrm{H}$
B.) ${ }^{14} \mathrm{~N}^{2} \mathrm{H}_{3}$
C.) ${ }^{14} \mathbf{N}^{1} \mathbf{H}^{2} \mathbf{H}_{2}$
D.) ${ }^{15} \mathrm{~N}^{1} \mathrm{H}^{2} \mathrm{H}_{2}$
E.) ${ }^{15} \mathrm{~N}^{1} \mathrm{H}_{3}$
3.) An oxide of titanium contains 40% oxygen by weight. What is the empirical formula of titanium oxide?
A.) TiO
B.) $\mathrm{Ti}_{2} \mathrm{O}_{3}$
C.) $\mathrm{Ti}_{3} \mathrm{O}_{2}$
D.) $\mathrm{Ti}_{2} \mathrm{O}$
E.) TiO_{2}
4.) The vapor pressure of tungsten at $2500{ }^{\circ} \mathrm{C}$ is $7.0 \times 10^{-9} \mathrm{~atm}$. What is the number of gaseous tungsten atoms in a light bulb of volume 0.20 L operating at $2500^{\circ} \mathrm{C}$?
A.) 1.9×10^{10}
B.) 3.7×10^{12}
C.) 4.11×10^{12}
D.) 5.4×10^{21}
E.) 1.2×10^{23}
5.) For O_{2} molecules at $100 \mathrm{~K}, \mathrm{v}_{\mathrm{rms}}=8.8 \mathrm{~m} / \mathrm{sec}$. At what temperature does $\mathrm{v}_{\mathrm{rms}}=4.4 \mathrm{~m} / \mathrm{sec}$?
A.) 25 K
B.) 50 K
C.) 71 K
D.) 141 K
E.) 400 K
6.) $\quad \mathrm{HA}_{1}$ and HA_{2} are two weak acids with dissociation constants $\mathrm{K}_{\mathrm{A}_{1}}$ and $\mathrm{K}_{\mathrm{A}_{2}}$, respectively. If the equilibrium constant for the reaction,

$$
\mathrm{HA}_{1}+\mathrm{A}_{2}^{-} \rightleftharpoons \mathrm{HA}_{2}+\mathrm{A}_{1}^{-}
$$ is $\mathrm{K}>1$, which of the following must be true?

A.) $\mathrm{K}_{\mathrm{A}_{1}}=\mathrm{K}_{\mathrm{A}_{2}}$
B.) $K_{A_{1}}>K_{A_{2}}$
C.) $\mathrm{K}_{\mathrm{A}_{1}}<\mathrm{K}_{\mathrm{A}_{2}}$
D.) $\mathrm{K}_{\mathrm{A}_{1}} / \mathrm{K}_{\mathrm{A}_{2}}=\mathrm{K}_{\mathrm{w}}$
E.) $\mathrm{K}_{\mathrm{A}_{1}} \times \mathrm{K}_{\mathrm{A}_{2}}=\mathrm{K}_{\mathrm{w}}$
7.) A solution of NaOH with $\mathrm{pH}=10.00$ is diluted with $\mathrm{H}_{2} \mathrm{O}$ by a factor of 10 . The resulting pH is:
A.) 1.00
B.) 9.00
C.) 9.43
D.) 10.57
E.) 11.00
\qquad
8.) A solution of NH_{3} with $\mathrm{pH}=10.00$ is diluted with $\mathrm{H}_{2} \mathrm{O}$ by a factor of 10 . The resulting pH is:
A.) 1.00
B.) 9.00
C.) 9.43
D.) 10.57
E.) 11.00
9.) Which compound could be added to the solution of sodium acetate $\left(\mathrm{CH}_{3} \mathrm{COONa}\right)$ in order to make an acidic buffer?
A.) $\mathbf{H C l}$
B.) NaOH
C.) $\mathrm{H}_{2} \mathrm{O}$
D.) NaCl
E.) NH_{3}
10.) A 0.1 M solution of which of the following species has the highest pressure of that species above the solution?
A.) He
B.) N_{2}
C.) O_{2}
D.) CO_{2}
E.) NH_{3}
11.) Which of the following has the smallest atomic or ionic radius?
A.) S^{2-}
B.) Cl^{-}
C.) Ar
D.) K^{+}
E.) Ca^{2+}
12.) Which of the following has the highest ionization energy?
A.) S
B.) Cl
C.) Ar
D.) K
E.) Ca
13.) Which of the following ground state atoms or ions is not paramagnetic?
A.) F
B.) \mathbf{O}^{2}
C.) Rb
D.) Al
E.) S^{-}
14.) Which atom or ion can have the following electron configuration $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5} 4 s^{1}$?
A.) $\mathbf{A r}$
B.) K
C.) Ca^{+}
D.) Ti^{2+}
E.) Zn
15.) In which of the following orbitals is the electron probability density spherically symmetric, i.e. independent of the angles φ and θ ?
A.) 9 s
B.) $8 p$
C.) 7 d
D.) $6 f$
E.) 5 g
\qquad
16.) For a neutral hydrogen atom, the radiation absorbed in the transition from $n=2$ to $n=3$ corresponds to a wavelength of 657 nm . What would be the wavelength of radiation absorbed in the transition from $\mathrm{n}=1$ to $\mathrm{n}=3$?
A.) 103 nm
B.) 657 nm
C.) 1051 nm
D.) 1314 nm
E.) 4205 nm
17.) Which of the following has the lowest ionization energy?
A.) $\mathrm{He}^{+} 1 \mathrm{~s}^{1}$
B.) $\mathrm{He}^{+} 4 \mathrm{~s}^{1}$
C.) $\mathrm{He}^{+} 2 \mathrm{~s}^{1}$
D.) $\mathrm{He} 1 \mathrm{~s}^{1} 2 \mathrm{p}^{1}$
E.) $\mathrm{He} 1 \mathrm{~s}^{1} 4 \mathrm{p}$
18.) Which one of the following is an incorrect Lewis electron dot structure?
A.) $\mathrm{H}: \mathrm{C}:: \mathrm{N}:$
B.) $[: \ddot{O}: \ddot{\mathrm{N}}:: \mathrm{Ö}:]$
C.) $: \mathrm{N}:: \mathrm{N}:$
D.) :Ö :: $\mathrm{C}:: \mathrm{O}:$
E.) $\underset{H}{H}: \ddot{\mathrm{H}}: \mathrm{H}$
19.) What is the $\mathrm{H}-\mathrm{C}-\mathrm{H}$ angle in $\mathrm{CH}_{3}{ }^{+}$?
A.) 60°
B.) 90°
C.) 109.5°
D.) 120°
E.) 180°
20.) Which molecule does not have an electric dipole moment?
A.) CHCl_{3}
B.) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
C.) $\mathrm{CH}_{3} \mathrm{Cl}$
D.) CO
E.) CS_{2}
21.) For a certain metal, orange light does not eject electrons, but yellow light does. Light of which range will eject electrons from the same metal with the lowest kinetic energy?
A.) infrared
B.) red
C.) green
D.) blue
E.) ultraviolet
22.) One mole of an ideal gas is compressed isothermally. Which of the following inequalities is true?
A.) $\Delta \mathrm{P}<0$
B.) $q>0$
C.) $\Delta \mathrm{S}<0$
D.) $\Delta V>0$
E.) $\Delta \mathrm{T}<0$
23.) Which is true for the following spontaneous reaction?

$$
\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

A.) $\Delta \mathrm{H}^{\circ}>0$
B.) $\Delta \mathrm{H}^{\circ}=0$
C.) $\Delta \mathrm{H}^{\circ}<0$
D.) $\Delta \mathrm{S}^{\circ}>0$
E.) $\Delta G^{\circ}>0$
24.) Given that $\mathrm{E}_{\mathrm{O}=\mathrm{O}}>2 \mathrm{E}_{\mathrm{O}-\mathrm{O}}$ where the E 's refer to bond energies, which is true for the conversion of ozone to oxygen?

$$
2 \mathrm{O}_{3} \longrightarrow 3 \mathrm{O}_{2}
$$

A.) $\Delta \mathrm{H}^{\circ}>0$
B.) $\Delta \mathrm{H}^{\circ}=0$
C.) $\Delta \mathrm{H}^{\circ}<0$
D.) $\Delta \mathrm{S}^{\circ}<0$
E.) $\Delta \mathrm{G}^{\circ}>0$
\qquad
For each of the problems $\mathbf{2 5 - 3 0}$, select the graph that best describes the behavior listed.
A.)

25.) Solubility of $\mathrm{Mg}(\mathrm{OH})_{2}$ as a function of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$.
A.) A
B.) B
C.) C
D.) D
E.) E
26.) PV as a function of $T\left({ }^{\circ} \mathrm{C}\right)$ for an ideal gas.
A.) A
B.) B
C.) C
D.) D
E.) E
27.) $\ln (\mathrm{K})$ as a function of $1 / \mathrm{T}$ for the combustion of $\mathrm{C}(\mathrm{s})$ to $\mathrm{CO}(\mathrm{g})$.
A.) \mathbf{A}
B.) B
C.) C
D.) D
E.) E
28.) The kinetic energy of an ideal gas $\left(\mathrm{E}_{\mathrm{kin}}\right)$ as a function of $\mathrm{T}(\mathrm{K})$.
A.) A
B.) B
C.) C
D.) D
E.) E
29.) The kinetic energy of photoelectrons ($\mathrm{E}_{\text {kin }}$) as a function of $1 / \lambda$ where λ is the wavelength of the light impinging on Cs metal.
A.) A
B.) B
C.) \mathbf{C}
D.) D
E.) E
30.) The solubility of $\mathrm{O}_{2}(\mathrm{~g})$ in $\mathrm{H}_{2} \mathrm{O}$ (1) as a function of $\mathrm{P}_{\mathrm{O}_{2}}$ at low pressure.
A.) A
B.) B
C.) C
D.) D
E.) E
\qquad

Part 2: Short Answer Problems (205 pts total)

Instructions: Enter answers in the boxes provided. Show your work. Explain your answer when requested in 15 words or less.
(10 pts)
1.) Hypochlorous acid, HClO , can be formed from the following chemical reaction. Balance the chemical reaction.

$$
2 \mathrm{Cl}_{2}+1 \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{HClO}
$$

If 4 moles $\mathrm{Cl}_{2}, 2$ moles O_{2}, and 1 mole $\mathrm{H}_{2} \mathrm{O}$ are mixed and the reaction proceeds until one or more of the reactants is completely consumed, how many moles of hypochlorous acid will be produced?

Answer:
2 moles
(15 pts)
2.) A 10.0 L bulb is maintained at $30.0^{\circ} \mathrm{C}$. After evacuating, $1.00 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is injected into the bulb.
a) If the water vapor acts like an ideal gas, what is the pressure inside the bulb?

$$
\begin{aligned}
& \mathrm{P} \mathrm{~V}=\mathrm{n} \mathrm{R} \mathrm{T,} \\
& \mathrm{P}=\mathrm{n} \mathrm{R} \mathrm{~T} / \mathrm{V}=0.138 \mathrm{~atm}
\end{aligned}
$$

Answer:
0.138 atm
b) Given the vapor pressure of $\mathrm{H}_{2} \mathrm{O}$ at $30.0^{\circ} \mathrm{C}$ is 0.0418 atm . Compare this value to your answer in part a). Describe what happens in the bulb. (Use 15 words or less.)
$0.0418<0.138$

```
Answer:
0.0418 atm < 0.138 atm.
Q > K for }\mp@subsup{\textrm{H}}{2}{}\textrm{O}(\textrm{l})->\mp@subsup{\textrm{H}}{2}{}\textrm{O}(\textrm{g}),\mathrm{ so the water vapor consenses.
```

\qquad

(16 pts)

3.) Draw the Lewis electron dot structure and sketch the molecular geometry of PCl_{3} and IF_{2}^{-}.

Lewis electron dot structure Molecular geometry
$\mathrm{IF}_{2}{ }^{-}$

Lewis electron dot structure

(14 pts)
4.) Given:

$$
\begin{array}{ll}
2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}=-2602 \mathrm{~kJ} \\
2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}=-3123 \mathrm{~kJ} \\
\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}=-286 \mathrm{~kJ}
\end{array}
$$

What is the $\Delta \mathrm{H}$ for the following reaction at $25^{\circ} \mathrm{C}$ and 1 atm ?

$$
\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})
$$

Answer:
$-311.5 \mathrm{~kJ}$
(12 pts)
5.) 1000 mL of an ideal gas is compressed to 500 mL under a constant external pressure of 10 atm . During the compression, 500 J of heat flowed from the gas to the surroundings. What are q and w for the process, and $\Delta \mathrm{E}$ for the gas?

$\mathrm{q}=$	
	-500 J

$\mathrm{w}=$	
	$\mathbf{5 0 7} \mathrm{J}$

$\Delta \mathrm{E}=$	
	7 J

\qquad

(20 pts)

6.) What is the pH of each of the following solutions?
a) $\quad 0.10 \mathrm{M}$ acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$

Answer:	

b) $\quad 0.10 \mathrm{M}$ sodium acetate $\left(\mathrm{CH}_{3} \mathrm{COONa}\right)$

Answer:

8.88

c) A mixture prepared by adding 500 mL of solution (a) to 500 mL of solution (c).

Answer:	
	4.75

(10 pts)
7.) Arrange the solutions in order of increasing pH . Place the appropriate letters in the boxes. (no pH calculations are needed)
A.) 0.2 M NaCl
B.) $0.2 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$
C.) $0.2 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$
D.) 0.2 M HCl
E.) 0.2 M NaOH

\qquad

(12 pts)

8.) 500 mL of a $2.0 \times 10^{-3} \mathrm{M} \mathrm{AgNO}_{3}$ solution are added to 500 mL of a $2.0 \times 10^{-5} \mathrm{M} \mathrm{NaCl}$ solution.

Determine whether or not a precipitate will form? Justify your answer.
$\mathrm{K}_{\mathrm{sp}}=1.8 \times 10^{-10}$
$\mathrm{Q}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=\left(1.0 \times 10^{-3} \mathrm{M}\right)\left(1.0 \times 10^{-5} \mathrm{M}\right)=1 \times 10^{-8}$
$\mathrm{Q}>\mathrm{K}$, therefore a precipitate will form.

Answer:
Yes, a precipitate will form.

(14 pts)

9.) The extinction coefficient (ε) with units of $\mathrm{cm}^{2} / \mathrm{g}$ equals the absorbance (A) for a $1 \mathrm{~g} / \mathrm{mL}$ solution for a path length (P) of 1.00 cm .
a) If an ethanol blank gives an intensity (I) of $2.0 \mu \mathrm{~A}$ at 400 nm and a $1 \mathrm{~g} / \mathrm{mL}$ sample of Z dissolved in ethanol gives an intensity of $1.5 \mu \mathrm{~A}$, what is the extinction coefficient for Z at 400 nm ?

$$
\mathrm{A}=-\log \left(\mathrm{I}_{0} / \mathrm{I}\right)
$$

Answer:

$$
0.125 \mathrm{~cm}^{2} / \mathrm{g}
$$

b) The absorbance of a solution containing Z dissolved in ethanol is determined to be 0.40 . What is the concentration of Z in the solution?
$\mathrm{A}=\varepsilon \ell \mathrm{c}$

Answer:

$3.2 \mathrm{~g} / \mathrm{mL}$

\qquad

(14 pts)

10.) An air sample obtained on top of a mountain has a density of $1.00 \mathrm{~g} / \mathrm{L}$ at 0.80 atm and 280 K . Calculate the mole fractions of oxygen and nitrogen in the air sample, assuming only nitrogen and oxygen are present and the gases are ideal under these conditions.

(20 pts)

11.) Consider the following reaction:

$$
\mathrm{PbO}_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Pb}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})
$$

a) Calculate $\Delta \mathrm{G}^{\circ}$ for the reaction.

$$
\Delta \mathrm{G}^{\mathrm{o}}=\Delta \mathrm{H}^{\mathrm{o}}-\mathrm{T} \Delta \mathrm{~S}^{\mathrm{o}}
$$

Answer:

$0.82 \mathrm{~N}_{2}$
$0.18 \mathrm{O}_{2}$

Answer:
217 kJ/mole
b) Calculate the equilibrium constant for this reaction at $25^{\circ} \mathrm{C}$.
$\Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{R} \mathrm{T} \ln \mathrm{K}$
$\mathrm{K}=\mathrm{e}^{-\Delta \mathrm{G}^{\mathrm{o}} \mathrm{RT}}=1.33 \times 10^{-39}$

Answer:

$$
10^{-39}
$$

c) Circle the temperature(s) at which the reaction is spontaneous at standard pressures and concentrations. Place an ' X ' over (cross out) the temperature(s) at which the reaction is not spontaneous. Show your work.
$\Delta \mathrm{G}=0$
$\Delta \mathrm{H}=\mathrm{T} \Delta \mathrm{S}$

$\Delta \mathrm{H} / \Delta \mathrm{S}=\mathrm{T}$
\qquad
(14 pts)
12.) Using average bond energies, estimate the change in enthalpy, $\Delta \mathrm{H}$, of the following (unbalanced) reaction.

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})
$$

$$
\Delta \mathrm{H}_{\mathrm{rxn}}=\Sigma \mathrm{H}_{\text {bonds broken }}-\Sigma \mathrm{H}_{\text {bonds formed }}
$$

Answer:
$-323 \mathrm{~kJ} / \mathrm{mole} \mathrm{O}_{2}$
(14 pts)
13.) The emission from level 3 to level 2 corresponds to a photon wavelength of 800 nm ; this line is indicated on the spectrum below. Sketch and label with appropriate wavelengths and transitions the remaining line(s) on the spectrum.

Spectrum

\qquad

(20 pts)

14.) Consider the molecule O_{2} and the molecular ion O_{2}^{+}in their respective ground states.
a) Fill in the electrons for the molecular orbital diagrams for O_{2} and O_{2}^{+}.

O_{2}

$\mathrm{O}_{2}{ }^{+}$
b) Determine the bond orders for O_{2} and $\mathrm{O}_{2}{ }^{+}$.

c) Upon the ionization of O_{2}, how does the bond strength change? Circle the correct response. decreases does not change
increases
d) Upon the ionization of O_{2}, how does the paramagnetism change? Circle the correct response.
decreases does not change increases

