Chemistry 4A Professor Pines		Midter Closed Bool	Midterm Exam 2 Version BClosed Book, 50 minutes, 125 points5 pages to						
Student Nam	ne: <u>KEY</u>	<u> </u>	Student ID#:						
GSI Name:		I	Lab Section Day/Time:						
		Potential	ly Useful Information	<u>l</u>					
Violet	Blue	Green	Yellow	Orange	Red				
400		500	600 Wavelength (nm)		700				
Light: $\lambda v =$	$= c, E_{photon} = hv$, $c = 2.99792 \times 10^8 m$	n s ⁻¹	$N_A = 6.02214$	x 10 ²³ mol ⁻¹				
Particle 1D	box: $E_n = \frac{h^2 n^2}{8mL^2}$; n = 1, 2, 3		h = 6.62608 x	10 ⁻³⁴ J s				
Absolute Te	emperature (Ke	lvins): $T(K) = T(°$	°C) + 273.15	$m_e = 9.10938$	x 10 ⁻³¹ kg				
Ideal Gas: $R = N_A k = 8$	PV = nRT .31447 J K ⁻¹ mol ⁻¹	$E_{Kin} = \frac{3}{2} nRT$ -1 = 0.0820574 L atm	$v_{\rm rms} = \sqrt{\frac{3K1}{M}}$ $K^{-1} \text{ mol}^{-1}$	k = 1.38066 x	x 10 ⁻²³ J K ⁻¹				
<u>Average B</u>	<u>ond Energies (k</u>	$\underline{J \text{ mol}^{-1}}$	<u>(*</u> .	<u>2</u>					
<u>H-H</u> (D-H O-O	<u>0=0</u> 407	$__\ $	Note: Und	er STP conditions				
430 4	+03 140	497 -	$\underline{\qquad} \sigma_{2p}$	(1 atm, 0) ideal g	C), one mole of an as occupies 22.4 L				
<u>C-C</u> <u>C</u> 348 <u>C</u>	C=C C≡C 512 838	<u>С-Н</u> 413	$\underline{\qquad } \sigma_{2s}^{*}$						
		<u>Leave this s</u>	ection blank for grad	ing					
		<u>Page 1:</u>	COVER PAGE						
		Page 2:	32						
		<u>Page 3:</u>	<u>10</u>						
		<u>Page 4:</u>	53						
		<u>Page 5:</u>	<u>30</u>						

B

<u>TOTAL: 125</u>

[B] Page 2 of 2 Student Name:			GSI Name:						
<u>Multiple Choice Questions</u> 8 questions; circle one answer for each question. (Questions 1–8 are worth 4 points each, 32 points total).									
1) The atoms or molecules of which ideal gas have the greatest average kinetic energy?									
A) Ar at 200C	B) He at 400C	C) He at 100C	D) H ₂ at 200C	E) H ₂ at 100C					
 2) Which will cause a molecular gas to behave less ideally? A) Raise T B) Increase dipole moment C) Lower P D) Shrink molecule E) Non 									
3) Which of the following is most paramagnetic?									
A) F ₂	B) F ₂ ⁻	C) F_2^{+2}	D) F_2^+	E) F_2^{-2}					
4) When acetyA) Created	lene C≡C polymerizes to pol B) Destroyed	yacetylene …C=C–C= C) Released	C-C=C-C… (Hydrogens n D) Absorbed	ot shown), energy is: E) Can't tell					
5) Which gives a linear plot for an ideal gas?									
A) P vs 1/V at	const T B) V vs T at const F	C) PV vs T	D) None of them	E) All of them					
6) Which idealA) He	l gas has a v _{rms} twice as great a B) Ne	ts that of Br ₂ at 300K ? C) Ar	D) Cl	E) Br					
7) What is the oxidation number of N in NO_2^- ?									
A) 0	B) 1	C) 2	D) 3	E) 5					
8) Pentane (C_5H_{12}) has 3 structural isomers. How many structural isomers does hexane (C_6H_{14}) have?									

 A) 4
 B) 5
 C) 6
 D) 7
 E) 8

Multiple Choice Questions (continued)

9) (2 points each, 10 points total) On the phase diagram for water (below), write the letter corresponding to the following processes in the box at the tail of the appropriate arrow:

- A) The isothermal compression of water vapor to ice
- **B**) Inducing the boiling of water at constant temperature
- **C)** The melting of ice under increasing pressure
- **D**) The isotherm of water with no phase transition
- E) Inducing the sublimation of ice to vapor at constant pressure

Write your answers and show your work in the boxes provided. Nothing outside the boxes will be graded.

Short Answer Ouestion #1 [20 points]

A 1 L bulb was filled with a monatomic, ideal gas to 1 atm at 0 °C. The bulb was then cooled so that the gas condensed to a liquid. The mass of the liquid was 5.858 grams. Identify the gas. Show your work.

Short Answer Question #2 [33 points]

a) [15 points] Draw a Lewis electron dot structure for each of PCl_4^{-} , CO_3^{2-} , HCN.

On your diagrams, indicate the value of any non-zero formal charges.

b) [18 points] Based on your Lewis structures, complete the table below.

	PCl ₄ ⁻		CO_{3}^{2}		HCN	
Steric Number (central atom)	5		3		2	
Hybridization (central atom)	sp ³ d		sp ²		sp	
Resonance? (circle one)	Yes	No	Yes	No	Yes	No
Bond Order	(P····Cl)	1	(C…O)	1 1/3	(C…N)	3
Molecular Shape (not including lone pairs)	see-saw		trigonal planar		linear	
Electric Dipole? (circle one)	Yes	No	Yes	No	Yes	No

Write your answers and show your work in the boxes provided. Nothing outside the boxes will be graded.

Shown schematically are the π , π^* molecular orbitals of butadiene [C=C–C=C] (Hydrogen atoms not shown).

a) [5 points] Write **HOMO** in the box below the representation of the HOMO (Highest Occupied Molecular Orbital) and write **LUMO** in the box below that of the LUMO (Lowest Unoccupied Molecular Orbital).

b) [10 points] In the HOMO \rightarrow LUMO transition, the C₁…C₂ bond becomes (Circle one):

 weaker and longer
 same
 stronger and shorter

 Briefly explain in terms of orbital structure and occupancy.

 By promoting an electron from an orbital with electron density between C₁ and C₂ to an orbital with a node between C₁ and C₂, the bond becomes weaker and longer.

c) [15 points] An estimate of the wavelength for the HOMO \rightarrow LUMO transition in butadiene is ~100 nm. (For butadiene, $n_{HOMO} = 2$, $n_{LUMO} = 3$, the box is 0.40 nm long and contains 4 π electrons.) Will the HOMO \rightarrow LUMO transition of dodecahexene [C=C-C=C-C=C-C=C-C=C, 12 carbon atoms] be in the visible range? Use the particle in a one-dimensional box model. Assume all C…C bonds are of length 0.133 nm.

Show your work

