Chemistry 1A, Fall 2005

Midterm 1
Sept 20, 2005
(90 min, closed book)

Name: \qquad
SID: \qquad
TA Name: \qquad

- This exam has 18 multiple choice questions and 10 short answer.
- For the multiple choice section, fill in the Scantron form AND circle your answer on the exam.
- You will be given a total of 90 minutes to complete the exam.

Note:

- Potentially useful equations and other information are found on the last page of this exam.
- Put your final answers in the boxes provided. Full credit cannot be gained for answers outside the boxes provided.

	Points available	Points earned
Pages 1-4, MC, Q1-18	38	
Page 5-6, SA Q 1-3	24	
Page 7, SA Q 4-5	10	
Page 8, SA Q6-7	10	
Page 9, SA Q8	5	
Page 10, SA Q9-10	13	
Total	$\mathbf{1 0 0}$	

Multiple Choice

Complete the following table by filling in the 20 numbered boxes. If an entry cannot be determined from the information given and the information on your periodic table, enter CBD (cannot be determined). Atomic masses are given in amu to three significant figures. Provide symbols as shown, using CBD if the complete symbol cannot be determined. Then answer the following multiple choice question (1 point each).

Symbol	Protons	Neutrons	Electrons	Charge	Mass
${ }^{63} \mathrm{Ni}$	28	${ }^{(1)}$	28		${ }^{(2)}$
${ }^{12} \mathrm{C}$	${ }^{(4)}$	${ }^{(5)}$	${ }^{(6)}$	0	${ }^{(7)}$
${ }^{(8)}$	${ }^{(9)}$	2	2	-1	3.00
${ }^{(10)}$	${ }^{(11)}$	${ }^{(12)}$	${ }^{(13)}$	0	14.0
${ }^{(14)}$	14	${ }^{(15)}$	14	${ }^{(16)}$	${ }^{(17)}$
${ }^{(18)}$	82	${ }^{(19)}$	${ }^{(20)}$	+2	208

1.) What value should occupy box (1)?
A) 28
B) 35
C) 42
D) 63
E) CBD
2.) What value should occupy box (4)?
A) 2
B) 24
C) 12
D) 6
E)CBD
3.) What value should occupy box (8)?
A) ${ }^{1} \mathrm{H}^{-1}$
B) ${ }^{3} \mathrm{He}^{-1}$
C) ${ }^{3} \mathrm{H}^{-1}$
D) ${ }^{3} \mathrm{Li}^{-1}$
E) CBD
4.) What value should occupy box (9)?
A) 1
B) 2
C) 3
D) 4
E) CBD
5.) What value should occupy box (10)?
A) ${ }^{14} \mathrm{~N}$
B) ${ }^{14} \mathrm{C}$
C) ${ }^{12} \mathrm{C}$
D) ${ }^{13} \mathrm{C}$
E) CBD
6.) What value should occupy box (14)?
A) ${ }^{14} \mathrm{~N}$
B) ${ }^{28} \mathrm{Si}$
C) ${ }^{14} \mathrm{C}$
D) ${ }^{14} \mathrm{Si}$
E) CBD
7.) What value should occupy box (16)?
A) -1
B) 0
C) 1
D) 2
E) $C B D$
8.) What value should occupy box (20)?
A) 82
B) 80
C) 84
D) 126
E) CBD

For Questions 9-15, use the information given below.
Consider a mixture of 0.300 mole of methane $\left(\mathrm{CH}_{4}\right)$ and 0.250 atm of oxygen $\left(\mathrm{O}_{2}\right)$ in a 10.5 L flask at $65^{\circ} \mathrm{C}$.
9.) What is the partial pressure of methane (atm) (3pt)?
A) 0.55
B) 1.1
C) 0.34
D) 0.26
E) 0.79
10.) How many moles of oxygen gas are present (3pt)?
A) 0.095
B) 22
C) 0.24
D) 0.67
E) 1.3
11.) What is the mole fraction of methane (3pt)?
A) 1.0
B) 0.88
C) 0.50
D) 0.76
E) 0.10
12.) What is the total pressure in the flask in atm (3pt)?
A) 1.0
B) 0.88
C) 0.50
D) 0.75
E) 0.10
13.) In the balanced combustion reaction of one mole of methane with oxygen, what is the stoichiometric coefficient of water (3 pt)?
A) 1
B) 1.5
C) 2
D) 2.5
E) 3
14.) If the reaction proceeds to completion, which is the limiting reagent (3pt)?
A) methane
B) oxygen
C) CH_{4} and O_{2} are in perfect stoichiometric ratio
15.) What is the final pressure in the flask after the reaction has come to completion (assume the water formed is a liquid and does not contribute) (3pt)?
A) 0.10
B) 0.250
C) 0.30
E) 1.0
16.) Which of the diagrams below is the best post-reaction representation for the (unbalanced) chemical equation $\mathrm{H}_{2}+\mathrm{NO} \rightarrow \mathrm{N}_{2}+\mathrm{H}_{2} \mathrm{O}$ (3pt)?

$$
\mathrm{H}=\mathrm{O} \quad \mathrm{~N}=\theta \quad \mathrm{O}=
$$

A)

B)

C)

17.) What is the electron pair arrangement for SF_{4}, shown right (3pt)?
A) Linear
B) Trigonal planar
C) Tetrahedral
D) Trigonal bipyramidal
E) Octahedral
18.) What is the molecular shape of ICl_{3}, shown right (3pt)?
A) Linear
B) Bent
C) Trigonal planar
D) Trigonal pyramid
E) Tee-Shaped

SHORT ANSWER

1.) Which Lewis structure is better for the CN radical (3 pt)? (circle one)

2.) Arrange the following from strongest to weakest chemical bond (3 pt).
A) N_{2}
B) CO_{2}
C) CO
D) $\mathrm{H}_{2} \mathrm{O}$

Answer:

$$
\mathrm{CO}>\mathrm{N}_{2}>\mathrm{CO}_{2}>\mathrm{H}_{2} \mathrm{O}
$$

3.) Consider the Lewis structures for BF_{3} and NH_{3} for the following questions (18 pt).
a) Draw the Lewis structure for BF_{3}.

b) What is the electron pair arrangement for BF_{3} (circle one)?
A) Linear
B) Trigonal planar
C) Tetrahedral
D) Trigonal Pyramidal
E) Octahedral
c) What is the molecular shape of BF_{3} (circle one)?
A) Linear
B) Bent
C) Trigonal planar
D) Trigonal pyramid
E) Tee-Shaped
d) How would you describe the electronic character of boron in the BF_{3} molecule (circle one)?
A) full octet
B) electron deficient
C) expanded octet
e) What is the molecular shape of NH_{3} (circle one)?
A) Linear
B) Bent
C) Trigonal planar

D) Trigonal pyramid
E) Tee-Shaped
f) BF_{3} reacts with NH_{3}. Predict the structure of the product and explain your answer.

Explanation:
in the product, the nitrogen can share it's lone pairs with the electron deficient boron
this gives every atom an octet
4.) How many nitrogen atoms are present in 5.00 g of calcium nitrate $\left(\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\right)(5 \mathrm{pt})$?
$5.00 \mathrm{~g} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \times \frac{1 \mathrm{~mole} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}}{164 \mathrm{~g} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}} \times \frac{2 \mathrm{~mol} \mathrm{~N} \text { atoms }}{1 \mathrm{~mole} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}} \times \frac{6.02 \times 10^{23} \text { atoms }}{1 \mathrm{~mole} \mathrm{~N} \text { atoms }}=3.67 \times 10^{22} \mathrm{~N}$ atoms
5.) A solution of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ in water is prepared by dissolving 75.00 mL of ethanol (density $=0.7900 \mathrm{~g} / \mathrm{cm}^{3}$) in enough water to make 250.0 mL of solution. What is the molarity of the ethanol in this solution $(5 \mathrm{pt}) ?\left(1 \mathrm{~mL}=1 \mathrm{~cm}^{3}\right)$
75.00 mL _ethanol $\times \frac{1 \mathrm{~cm}^{3}}{1 \mathrm{~mL}} \times \frac{0.7900 \mathrm{~g}_{-} \text {ethanol }}{\mathrm{cm}^{3}} \times \frac{1 \text { mole_ethanol }}{46.02 g_{_} \text {ethanol }}=1.287 \mathrm{moles}$ _ethanol
$\frac{1.287 \text { _moles_ethanol }}{0.2500 L_{\text {_ solution }}}=5.148 \frac{\text { moles_ethanol }}{L_{\text {_ }} \text { solution }}$ or _ 5.148 M
6.) How many grams of silver chloride (AgCl) can be prepared by the reaction of 50.00 mL of 0.200 M silver nitrate $\left(\mathrm{AgNO}_{3}\right) 50.00 \mathrm{~mL}$ of 0.250 M calcium chloride $\left(\mathrm{CaCl}_{2}\right)(5 \mathrm{pt})$?
$2 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{CaCl}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{AgCl}(\mathrm{s})+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
$0.05000 \mathrm{~L} \mathrm{AgNO}_{3} \times \frac{0.200 \text { moles } \mathrm{AgNO}_{3}}{\mathrm{~L}}=0.0100$ moles AgNO_{3}
$0.05000 \mathrm{~L} \mathrm{CaCl}_{2} \times \frac{0.250 \mathrm{moles} \mathrm{CaCl}}{2}$ $=0.0125$ moles CaCl_{2}
Because the reaction shows that you need twice as much AgNO_{3} as CaCl_{2}, it would take 0.0250 moles of AgNO_{3} to fully react with the CaCl_{2}. We only have 0.0100 moles of AgNO_{3}, so AgNO_{3} is the limiting reagent.
0.0100 moles $\mathrm{AgNO}_{3} \times \frac{2 \text { moles } \mathrm{AgCl}}{2 \text { moles } \mathrm{AgNO}_{3}} \times \frac{143.32 \mathrm{~g} \mathrm{AgCl}}{1 \text { mole } \mathrm{AgCl}}=1.43 \mathrm{~g} \mathrm{AgCl}$

Laboratory

7.) In the airbags experiment, a student combined 0.4932 g sodium bicarbonate with 0.8700 mL of 6.00 M acetic acid to produce sodium acetate, water, and carbon dioxide gas. Calculate the theoretical volume of the airbag in mL if the pressure is 1 atm and the temperature is $25^{\circ} \mathrm{C}$. $(5 \mathrm{pt})$

$$
\mathrm{NaHCO}_{3}(\mathrm{~s})+\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{CH}_{3} \mathrm{COONa}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

moles_ $\mathrm{NaHCO}_{3}=\frac{0.4932 g_{-} \mathrm{NaHCO}_{3}}{} \times \frac{1 \mathrm{~mol}_{-} \mathrm{NaHCO}_{3}}{84.00 g_{-} \mathrm{NaHCO}_{3}}=0.005871 \mathrm{moles} \Omega_{-} \mathrm{NaHCO}_{3}$
moles_CH $\mathrm{COOH}_{3}=0.0008700 \mathrm{~L}_{-} \mathrm{CH}_{3} \mathrm{COOH} \times \frac{6.00 \mathrm{~mol}_{-} \mathrm{CH}_{3} \mathrm{COOH}}{L_{-} \text {solution }}=0.00522 \mathrm{moles}_{-} \mathrm{CH}_{3} \mathrm{COOH}$
acetic acid is the limiting reagent
0.00522 moles_ $\mathrm{CH}_{3} \mathrm{COOH} \times \frac{1 \mathrm{~mole}_{2} \mathrm{CO}_{2}}{\text { moles_CH } \mathrm{C}_{3} \mathrm{COOH}}=0.00522 \mathrm{moles}_{-} \mathrm{CO}_{2}$
using the ideal gas law...
$V=\frac{n R T}{P}=\frac{\left(0.00522 \mathrm{moles} _\mathrm{CO}_{2}\right)\left(0.0821^{\mathrm{Latm} / \mathrm{molK}}\right)(298 \mathrm{~K})}{1 \mathrm{~atm}}=0.128 \mathrm{~L}_{-} \mathrm{CO}_{2}$
9.) Draw the best Lewis structure for the sulfite ion $\left(\mathrm{SO}_{3}{ }^{2-}\right)$ by minimizing formal charges. Clearly label all atoms with their formal charges and indicate the S-O bond order (8 pt). Show resonance structures if appropriate.
the structure shown below minimizes formal charge and places the negative formal charge on the most electronegative element

Bond order $=4 / 3$
10.) Sketch the electron pair geometry and use VSEPR to predict the bond angels in the sulfite ion $\left(\mathrm{SO}_{3}{ }^{2-}\right)(5 \mathrm{pt})$.
anything similar to these structures is acceptable...

Bond angles: less than 109.5°, probably between 104 and 109°

