Chemistry 1A Fall 2000

Midterm Exam II, version A **October 17, 2000**

(Closed book, 75 minutes, 145 points)

Name: _____

Section Number:

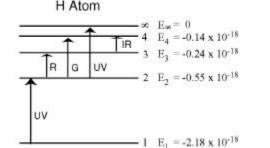
SID:

T.A. Name: _____

Identification Sticker

Exam information, extra directions, and useful hints to maximize your score:

- Write your name on all ten pages.
- There are two parts to the exam: 1) multiple choice and 2) short answer problems.
- For the multiple choice problems, fill in the ScantronTM form AND circle the answer on your exam.
- Answer the questions you know how to do first, then work on the questions you skipped.
- Show all work for which you want credit on the short answer problems and do not forget units!
- You may use the back side of the exam pages for scratch paper.


U	Init Prefixes	
milli, m (x 10 ⁻³)	micro, ì (x 10 ⁻⁶)	nano, n (x 10 ⁻⁹)
kilo, k (x 10 ³)	mega, M (x10 ⁶)	giga, G (x 10 ⁹)

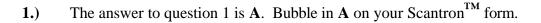
Some possibly useful information:

 $E_{photon} = hi = hc/\ddot{e}$

E

$$v_{\rm rms} = \sqrt{\frac{3 {\rm RT}}{M}}$$

$$\begin{split} E_{Kin} = & \frac{3}{2} nRT \\ PV = & nRT \\ E_n = & -\frac{Z^2}{n^2} R_{\infty} \end{split} \qquad \begin{array}{c|c|c|c|c|c|} & Ionization & Electron \\ & Affinity \\ (kJ/mol) & (kJ/mol) \\ \hline Na & 496 & -53 \\ \hline Ne & 2081 & \sim 0 \\ \hline \end{array}$$

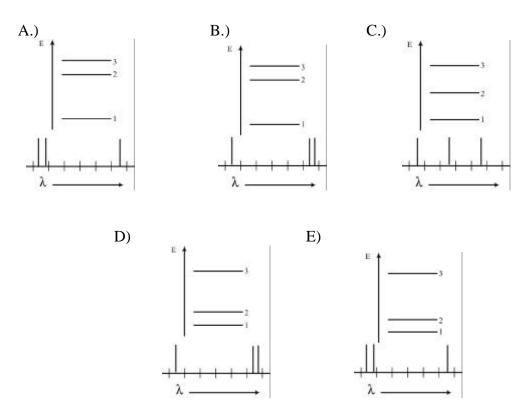

 $T(K) = T(^{\circ}C) + 273.15$

(Do not write in this box; it is for official use only.)

Page	Points
2-5	/ 60
6-7	/ 40
8-10	/ 45
Total	/ 145

Part 1: Multiple Choice (5 pts each, 60 pts total)

Instructions: Bubble in the correct answer on your Scantron sheet AND circle the answer on your exam. Each question has one correct answer.



- **2.)** What is the electron affinity of Na^+ ?
 - A.) -2081 kJ/mol B.) -496 kJ/mol C.) ~0 kJ/mol

D.) 53 kJ/mol

E.) 2081 kJ/mol

3.) Select the correct energy level diagram and absorption spectrum pair for He⁺?

For questions 4 and 5, refer to the energy level diagram for the hydrogen atom shown on page 1.

- **4.**) Can hydrogen atoms in the ground (lowest energy) state absorb a photon of energy 1.75×10^{-18} J?
 - A.) Yes, because hydrogen atoms can absorb any energy in the range from zero to 2.18×10^{-18} J.
 - B.) Yes, because the electron is promoted to an energy between the second and third energy levels. As the electron drops to the second level, the hydrogen atoms release the excess energy.
 - C.) Yes, because this represents the energy difference between the ground state and second energy level.
 - D.) No, because this much energy would cause the atom to be ionized.
 - E.) No, because this energy does not correspond to the energy difference between the ground state and any other energy level.
- 5.) Can hydrogen atoms in the ground (lowest energy) state absorb a photon of energy 3.00×10^{-18} J?
 - A.) Yes, because this energy corresponds to the energy difference between the ground state and a quantized energy level with energy greater than zero.
 - B.) Yes, the energy of the light is greater than what is required to ionize the atom. The excess energy would be converted into kinetic energy.
 - C.) No, it is impossible for atoms to absorb light whose energy is greater than their ionization energy.
 - D.) No, atoms can only absorb light whose energy corresponds to the difference between the ground state and another level.
 - E.) No, light of this energy would not be enough to excite the electron from the ground state to the first energy level.

Name:_____

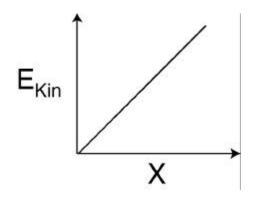
6.) Which has a higher ionization energy than Ne?

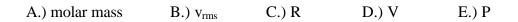
A.) Ar B.) F C.) \vec{F} D.) Na^+ E.) Na

7.) How many unpaired electrons exist in the ground state electronic configuration $[Ar]4s^23d^8$?

A.) 0 B.) 1 C.) 2 D.) 3 E.) 4

8.) Which orbital has the quantum numbers n = 3 and = 1?


A.) 2s B.) 2p C.) 3s D.) 3p E.) 4d


9.) Identify X from the configuration X^+ ($1s^22s^22p^63s^2$).

A.) Na B.) Mg C.) Al D.) Si E.) P

Page 5 of 5

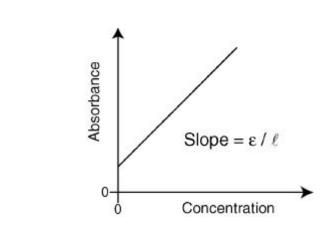
10.) For one mole of an ideal gas at constant volume, X = ?

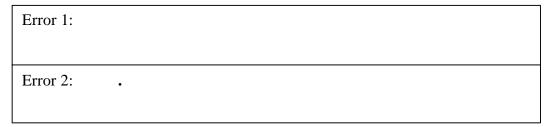
11.) Absorption of what color light will induce the $4 \rightarrow 6$ transition in He⁺?

A.) Infrared (IR) B.) Red C.) Green

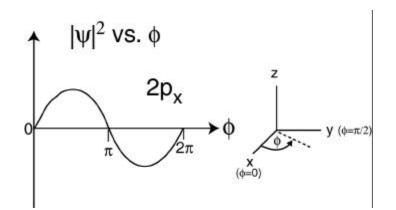
D.) Blue

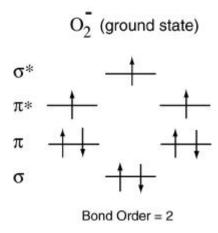
E.)Ultraviolet (UV)


Part 2: Short Answer Problems (85 pts total)

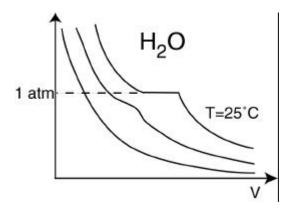

Instructions: Enter answers in the boxes provided. Show your work. <u>Where requested</u> write explanations in fifteen words or less.

(40 pts)


1.) Each figure in parts a-d contains at least two errors. In the space provided, specify two of the errors and provide a brief explanation of each one.



b.)


Error 1:			
Error 2:			

c.)

d.)

(45 pts) 2.)

1) Ozone (O_3) gas is placed in a 1.0 L glass vessel at a pressure of 2.0 atm and a temperature of 300 K. Assume ideal behavior.

a) What are the number of moles and the mass of ozone present?

Moles Ozone:

b) Shining ultraviolet light on O₃ induces the following reaction:

 $2 O_3(gas) \rightarrow 3 O_2(gas)$

If half of the ozone present reacts, what is the final mole fraction of each gas in the vessel?

Mole Fraction O₂:

Mole Fraction O₃ :

c.) Calculate the partial pressure of each gas and the total pressure.

Pressure O ₃ :	
Total Pressure:	

d) The graph below depicts the speed distribution of O_3 molecules at 300K. Using the same axes, sketch the distribution of O_3 at 1200K.