Signature:

SID:

PRINT YOUR NAME CLEARLY!!

Chem 3BL F08 Neil O.L. Viernes Final Exam

02DEC08

This exam has 10 pages; make sure you have them all.

Please place answers in designated spaces. **Please write clearly.** Messy or ambiguous answers <u>will not be</u> <u>graded</u>.

This exam is 60 minutes long. No clarifying questions will be answered by the GSI's after the exam begins.

Mark one of the following.

____ Completing I Grade

113

212

- ____ 101 WRAY, CURTIS ____ 311 MAHER, CYRUS
- ____ 102 YOTPHAN, SIRILATA ____ 312 COYLE, MICHAEL
- ____ 103 DULATAS, LEA ____ 401 COHEN, ALLISON
- ____ 111 BAGULEY, TYLER ____ 402 COHEN, JESSICA
- ____ 112 LIPKE, MARK ____ 403 GRAY, DANIEL
 - SCHAWEL, ADAM _____ 411 ANTONUK, CATHERINE
- ____ 201 BRANDT, LAURA ____ 412 WANG, YIMING
- ____ 202 WITUS, LEAH ____ 501 MARTIN, RHIA M.
- ____ 203 GREENWALD, STEPHEN ____ 502 PURDHAM, MICHAEL
 - ____ 204 MITCHELL, WILLIAM ____ 503 RANDAZZO, JOHN
- ____ 211 SMITH, ELIZABETH ____ 5

____ 511 OBERMEYER, ALLIE

- ____ 512 PACILLI, MASSIMO
- ____ 301 MCDONALD, THOMAS

TWITE, AMY AFTON

- ____ 302 GRIBBLE, MICHAEL
- ____ 303 THOI, VAN SARA

 1)
 (6)

 2)
 (10)

 3)
 (8)

 4)
 (6)

 5)
 (8)

 Total:
 (38)

Do not write in this box

© 2008 N.O.L. Viernes, Berkeley, all rights reserved

1) (6 pts)

If 0.50 g of the starting material was used and was completely converted to product 2. How many grams of 2 should be recovered.

The % yield of the overall transformation to compound 3 is 83%. How many mmols of 3 is recovered?

What is the molecular weight of compound 3

2) (10 pts)

The following reaction was conducted in lab. Prolonged heating converted the initial product (2) to (3).

The reaction was monitored by TLC (SiO₂ solid phase). What would the R_f of the product 2 be relative to the starting material?

What would the R_f of the product 3 be relative to product 2?

Complete the following TLC plate for the reaction with the following additional information:

- 1) The starting material is not observed after 45 minutes
- 2) The product 2 is observed after 5 minutes

3) The product 3 is observed after 35 minutes

4) The product 2 is not observed after 85 minutes

The starting material is identified on the TLC plate as SM.

3) (8 pts) The following reaction was conducted in lab. Prolonged heating converted the initial product (2) to (3).

¹H NMR spectra for both of the compounds (2) and (3). Determine how you would differentiate between the proton spectra for compounds (2) and (3).

Draw the splitting tree for a doublet-quartet with a coupling constant of 6 and 2 respectively. Also provide the expected ratios for each peak.

pr	OVIC	ie ti	ie e	xpe	ctea	i rai	lios	IOr	eac	n pe	eak.									
														-						
														-						
																				 ┝──┤
																				 \mid

Draw the molecular orbitals involved in the *heat-driven* ring closing of the compound below. Determine the direction of ring closing (con- or disrotary). Some key molecular orbitals are provided above.

Draw the molecular orbitals involved in the *heat-driven* ring opening of the compound below. Determine the direction of ring opening (con- or disrotary). Some key molecular orbitals are provided above.

5) (8 pts)

Identify the best technique to purify the product boxed from each mixture.

A = SiO₂ Column Chromatography

B = C₈ Column Chromatography

E = Size Exclusion Chromatography F = Affinity Chromatography

Polyacrylamide Mw = 3500	Polyacrylamide Mw = 100,000	
HO H ₂ N OH	H ₂ N OH	

Provide the structure of the fragments detected by mass spectrometry for the following ketone.

 α -cleavage

McLafferty Rearrangement