Solutions to Midterm 2

1. Prove or disprove:

 (a) Let M be a deterministic Turing machine that, on inputs of length n, uses space $O(n^2)$. Then for every input x, and every configuration C of the computation of M on input x, $K(C) \leq O(|x|)$ there K is Kolmogorov complexity and $|x|$ is the length of x.

 (b) Let M be a deterministic Turing machine that, on inputs of length n, uses space $O(n^2)$ and time $O(n^3)$. Then for every input x, and every configuration C of the computation of M on input x, $K(C) \leq O(|x|)$ where K is Kolmogorov complexity and $|x|$ is the length of x.

[30 points]

Solution Outline:

(a) The statement is false. Consider a machine M which simply looks at the length n of the input and then enumerates all possible strings of length n^2 on its tape. Since there is a string C of length n^2 such that $K(C) \geq O(n)$, we get a contradiction.

(b) This statement is true. Any configuration C of the machine can be describes by specifying the code of the machine, the input and the time at which the configuration occurs. Since the code of the machine is a constant, the time can be specified in $O(\log |x|^3) = O(\log x)$ bits and the input is $|x|$ bits, this gives $K(C) \leq O(|x|)$.

2. We define #SAT to be the language:

 $$\#SAT = \{(\varphi, k) \mid \varphi \text{ has exactly } k \text{ satisfying assignments}\}$$

Show that:

(a) #SAT is coNP hard (recall that coNP = \{L \mid \overline{L} \in NP\}).

(b) #SAT \in PSPACE.

[40 points]

Solution Outline:

(a) To show #SAT is coNP hard, note that $\varphi \in \overline{SAT} \iff (\varphi, 0) \in #SAT$ as \overline{SAT} is the set of all the formulas which are unsatisfiable i.e. have exactly 0 satisfying assignments. This shows that $\overline{SAT} \leq_p #SAT$ which proves the claim.

(b) We enumerate all possible assignments to the variables and for each assignment, we can check if it satisfies the formula. We also keep a count of the satisfying assignments. Since it takes n bits to store an assignment, n bits to store the counter (as there can be at most 2^n satisfying assignments), polynomial space to check if a given assignment satisfies the formula, the algorithm uses polynomial space overall.
3. Let $Th(\mathbb{N}, +, \leq)$ denote the theory of the model whose universe is the set of natural numbers (including 0) and the relations are the usual $+$ and \leq relations as defined on natural numbers. Show that $Th(\mathbb{N}, +, \leq)$ is NP-hard.

[30 points]

Solution Outline: We reduce 3SAT to deciding statements in $Th(\mathbb{N}, +, \leq)$. Let φ be a 3SAT formula with variables x_1, \ldots, x_n. We create a logical sentence with quantifiers $\exists x_1, \ldots, x_n$. To simulate x_i, for each variable x_i, we add the clause $\exists x_i (x_i + \bar{x}_i = 1)$. Here, we think of 1 as *true* and 0 as *false*. Note that since x_i and \bar{x}_i are both non-negative, they can be only 0 or 1 by the above clauses.

Finally, we two clauses for checking every clause of φ is satisfied. Say $c_j = (x_{i_1} \lor \bar{x}_{i_2} \lor x_{i_3})$ is a clause in φ. Then we add $\exists y_j (y_j = x_{i_1} + \bar{x}_{i_2}) \land (1 \leq y_j + x_{i_3})$. Note that we need to add an extra variable y_j for each clause c_j since the ‘+’ relation only allows us to add two numbers at a time. It is easy to see that the reduction is polynomial time and the new sentence is true if and only if φ is satisfiable.