KEY

Chemistry 1A, Fall2003

Midterm Exam III, Version A November 13, 2003 (90 min, closed book)

Name:_____

SID:									

TA Name:_____

- Write your name on every page of this exam.
- This exam is multiple choice. Fill in the Scantron form AND circle your answer on the exam.
- There are 40 multiple choice questions. 3.75 points each
- The questions can be worked in any order. Do those that you can do quickly first, then work the other questions.

Potentially useful relations:

$$E = hv$$

$$\lambda v = c$$

$$\lambda_{deBroglie} = h / p = h / mv$$

$$p = mv$$

$$E_{kin} = \frac{1}{2} mv^{2}$$

$$E_{kin} (e) = hv - \Phi = hv - hv_{0}$$

$$E_{n} = -\frac{Z^{2}}{n^{2}} R_{\infty}$$

$$PV = nRT$$

$$E_{kin} = \frac{3}{2} RT$$

$$v_{rms} = \sqrt{\frac{3RT}{M}}$$

$$\Delta E = q + w$$

w = - P_{ext} \Delta V
$$\Delta E = \frac{3}{2} nR \Delta T$$

$$N_{0} = 6.02214 \times 10^{23} \text{ mol}^{-1}$$

$$R_{\infty} = 2.179874 \times 10^{-18} \text{ J}$$

$$R_{\infty} = 3.28984 \times 10^{15} \text{ Hz}$$

$$k = 1.38066 \times 10^{-23} \text{ J K}^{-1}$$

$$h = 6.62608 \times 10^{-34} \text{ J s}$$

$$m_{e} = 9.101939 \times 10^{-31} \text{ kg}$$

$$c = 2.99792 \times 10^{8} \text{ m s}^{-1}$$
Gas Constant:

$$R = 8.31451 \text{ J K}^{-1} \text{ mol}^{-1}$$

$$R = 8.20578 \times 10^{-2} \text{ L atm K}^{-1} \text{ mol}^{-1}$$

$$T (K) = T (C) + 273.15$$

$$F = 96,485 \text{ C / mol}$$

$$1 \text{ V} = 1 \text{ J / C 1 nm} = 10^{-9} \text{ m}$$

$$1 \text{ kJ} = 1000 \text{ J}$$

$$Cp(H_{2}O) = 4.184 \text{ J/g K}$$

$$\begin{split} \Delta G^\circ &= \Delta H^\circ \text{ - } T\Delta S^\circ \\ \Delta H^\circ &= \Sigma \ \Delta H^\circ{}_f \ (\text{products}) \text{ - } \Sigma \ \Delta H^\circ{}_f \ (\text{reactants}) \\ \Delta S^\circ &= \Sigma \ S^\circ \ (\text{products}) \text{ - } \Sigma \ S^\circ \ (\text{reactants}) \\ \Delta G^\circ &= \Sigma \ \Delta G^\circ{}_f \ (\text{products}) \text{ - } \Sigma \ \Delta G^\circ{}_f \ (\text{reactants}) \\ S &= k_B ln W \end{split}$$

for aA + bB
$$\leftarrow$$
 cC + dD

$$Q = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$
 At equilibrium, Q = K

$$\Delta G^{\circ} = - RT \ln K$$
$$\ln K = -\frac{\Delta H^{\circ}}{R} \frac{1}{T} + \frac{\Delta S^{\circ}}{R}$$
$$\Delta G^{\circ} = - nF \Delta C^{\circ}$$

$$pX = -\log X$$
$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$

Color and Wavelength of Light

Wavelength (nm)							
800	600	400	200				
			1				

IR Visible

 ΔG° of Formation

compound	$\Delta G^{\circ} (kJ / mol)$
CO ₂	-394.36
$H_2O(g)$	-228.57
$C_{6}H_{12}O_{6}$	-910
O ₂	0

UV

SECTION 1: EQUILIBRIUM

For questions 1 - 11 consider the following three reactions at 298 K.

I. $2 SO_3 (g) \leftrightarrow 3 O_2 (g) + 2 S (s)$ K = 0.225 $\Delta H^\circ = +791 kJ$ II. $S (s) + O_2 (g) \leftrightarrow SO_2 (g)$ K = 225 $\Delta H^\circ = -270 kJ$ III. $2 SO_3 (g) \leftrightarrow O_2 (g) + 2 SO_2 (g)$

1.) What is the equilibrium constant for a mixture of O₂, SO₃ and SO₂ gas (rxn. III)?

A) 75.5
B) 112
C) 1.1 x 10⁴
D) 2.5 x 10⁻⁵
E) 0.775

- 2.) What is the value of the equilibrium constant for rxn I if at equilibrium the flask contains 0.236 atm SO₃, 0.500 atm O₂, and 0.01 g Sulfur after a temperature change.
 - A) 0.0909
 - B) 11.0
 - C) 1.63×10^{-5}
 - <u>D) 6.25 x 10^{-2} </u>
 - E) 2.24
- 3.) .What change has occurred if the value of K for rxn I is found to be 0.552?
 - A) An increase in temperature.
 - B) A decrease in temperature.
 - C) An increase in pressure.
 - D) An increase in volume.
 - E) cannot be determined.
- 4.) Which is a suitable expression for the reaction quotient for the formation of SO_2 from the elements?
 - A) $P(O_2) / P(SO_2)$ B) $P(O_2) P^2(SO_2) / P(S)$
 - C) $P(O_2) / P^2(SO_2) / P(S)$
 - C) $P(O_2) / P(SO_2)P$
 - D) $P(SO_2) / P(O_2)$
 - E) Nothing can be said with the information given.
- 5.) What is ΔH° for reaction III?

6.) Which is the best arrangement of the relative enthalpies of formation of compounds O₂, SO₃, and SO₂?

$$\Delta H \begin{bmatrix} A \\ B \end{bmatrix} \begin{bmatrix} C \\ O_2 \end{bmatrix} \begin{bmatrix} D \\ SO_3 \end{bmatrix} \begin{bmatrix} C \\ SO_3 \end{bmatrix} \begin{bmatrix} C \\ SO_2 \end{bmatrix} \begin{bmatrix} C \\ SO_3 \end{bmatrix} \begin{bmatrix} C \\ SO_2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} C \\ SO_2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} C \\ SO_2 \end{bmatrix}$$

- 7.) What is the best prediction of ΔS° for reaction I at 298K?
 - A) $\Delta S^{\circ} > 0$
 - B) $\Delta S^{\circ} = 0$
 - C) $\Delta S^{\circ} < 0$
 - D) $\Delta S^{\circ} \leq 0$
 - E) $\Delta S^{\circ} \ge 0$
- 8.) What can you say about reaction I at 298 K?
 - A) It is exothermic.
 - B) It is spontaneous.
 - C) It is not spontaneous.
 - D) It is at equilibrium. (this was also accepted because conditions weren't specified)
 - E) It releases heat.
- 9.) The correct plot for lnK vs 1/T for reaction I would pass through which pair of points (fill in both points on scantron sheet)?

- 10.) From which of the following starting conditions would it be impossible for equilibrium to be achieved for reaction **II**?
 - A) Pure $SO_2(g)$.
 - B) A mixture of $SO_2(g)$, $O_2(g)$, and S(s).
 - C) A mixture of $SO_2(g)$ and $O_2(g)$.
 - D) Pure $O_2(g)$ and S (s).
 - E) Equilibrium can be achieved from any of these starting conditions.

Name

- 11.) Which occurs when adding S (s) to the equilibrium described by reactions I, II and III?
 - A) A decrease in the pressure of $SO_3(g)$.
 - B) A decrease the pressure of $SO_2(g)$.
 - C) An increase in the value of the equilibrium constant.
 - D) An increase in the total pressure of the system.
 - E) No change in the equilibrium.

Continue with the next question:

- 12.) For the reaction
 - $A(l) + 2D(g) \rightarrow 3X(g) + Z(s)$

having $\Delta G^{\circ} = -2400 \text{ kJ}$ at 25°C, the equilibrium mixture _____.

- A) will consist almost exclusively of A and D.
- B) will consist almost exclusively of A and Z.
- C) will consist almost exclusively of X and Z.
- D) will consist of significant amounts of A, D, X, and Z.
- E) has a composition predictable only if one knows T and ΔH° and ΔS° .
- 13.) The equilibrium constant for the reaction below at 25°C is 4.8×10^{-6} . Calculate the equilibrium concentration (mol/L) of Cl₂(g) if the initial concentration of ICl (g) is 1.33 mol/L. There is no I₂ or Cl₂ initially present.

$$2ICl(g) \leftrightarrow I_2(g) + Cl_2(g)$$

- A) 2.9×10^{-3}
- B) 5.8×10^{-3}
- C) 3.2×10^{-6}
- D) 6.4 x 10⁻⁶
- E) 343
- 14.) Which of the following equilibria, will shift to the left in response to a decrease in volume?

A) $H_2(g) + Cl_2(g) \leftrightarrow 2 HCl(g)$ B) $2 SO_3(g) \leftrightarrow 2 SO_2(g) + O_2(g)$ C) $N_2(g) + 3 H_2(g) \leftrightarrow 2 NH_3(g)$ D) $4 Fe(s) + 3 O_2(g) \leftrightarrow 2 Fe_2O_3(s)$

E) $2HI(g) \leftrightarrow H_2(g) + I_2(g)$

15.) Consider the following reaction at equilibrium:

 $2CO_2(g) \leftrightarrow 2CO(g) + O_2(g) \qquad \Delta H^\circ = -514 \text{ kJ}$

How can the yield of CO(g) be maximized ?

- A) at high temperature and high pressure
- B) at high temperature and low pressure
- C) at low temperature and low pressure
- D) at low temperature and high pressure
- E) in the presence of solid carbon
- 16.) Which is true for every reaction if the temperature is raised?
 - A) Chemical reactions favor products.
 - B) Chemical reactions favor reactants.
 - C) No change is observed.
 - D) Equilibrium constants increase.
 - E) None of these.

For the following three questions, consider the equilibrium PbSO₄ (s) \leftrightarrow Pb²⁺ (aq) + SO₄⁻² (aq) which has a K_{sp} = 1.6 x 10⁻⁸ at 298 K

- 17.) What is the concentration of lead ions in water (M) when solid PbSO₄ is present?
 - A) 1.6×10^{-10} B) 1.3×10^{-4} C) 1.0D) 1.1×10^{4}
 - E) 22.5
- 18.) What is the concentration of lead ions (M) in 0.01 M NaSO₄ ($K_{sp} \sim 10^8$) when solid PbSO₄ is present?

 $\begin{array}{c} A) \ 1.6 \ x \ 10^{-6} \\ B) \ 1.3 \ x \ 10^{-4} \\ C) \ 1.0 \\ D) \ 1.1 \ x \ 10^{4} \\ E) \ 22.5 \end{array}$

19.) What is ΔG° for the dissolution of lead sulfate at 298 K (kJ/mol)?

A) 44

- B) -13
- C) 5.9
- D) 1.1×10^4
- E) 2.3×10^{-3}

Continue with the next question:

SECTION 2: PHASES OF MATTER

For the following questions consider the phase diagram for water below.

- 20.) At which point are gas, liquid and solid all in equilibrium?
 - A) (T2, P2)
 - B) (T2, P1)
 - C) (T1, P1)
 - D) (T3, P1)
 - E) (T3, P3)
- 21.) Arrow I corresponds to:
 - A) Constant pressure
 - B) Equilibrium
 - C) Sublimation
 - D) Condensation
 - E) Melting
- 22.) Along the curve containing the points (T2, P2) and (T3, P3):
 - A) Solid, liquid and gas are all in equilibrium.
 - B) Liquid and gas are in equilibrium.
 - C) The vapor pressure is constant.
 - D) The gas cannot be condensed at any pressure.
 - E) Only the solid phase is observed.
- 23.) At the point (T2, P3) the substance is:
 - A) In equilibrium between liquid and gas.
 - B) A liquid.
 - C) A gas.
 - D) A supercritical fluid.
 - E) A solid.

- 24.) Which is true at temperatures above T3?
 - A) Solid, liquid and gas are all in equilibrium.
 - B) Liquid and gas are in equilibrium.
 - C) The vapor pressure is constant.
 - D) The gas cannot be condensed at any pressure.
 - E) Only the solid phase is observed.

25.) Which intermolecular force predominates in the condensation of water?

- A) H-bonding
- B) Van der Wals
- C) London
- D) Ion-Ion
- E) Dipole-Ion

Continue with the next question:

SECTION 3: THERMODYNAMICS

26.) Which one of the following is always positive when a spontaneous process occurs?

- A) ΔSsystem
- B) $\Delta S_{surroundings}$
- C) $\Delta S_{universe}$
- D) $\Delta H_{universe}$
- E) $\Delta H_{surroundings}$
- 27.) Which is true of the entropy of the universe?
 - A) conserved.
 - B) continually decreasing.
 - C) continually increasing.
 - D) equal to zero.
 - E) equal to the energy, E.
- 28.) Which is a state function (mark all that apply)?
 - A) flame heating.
 - B) enthalpy.
 - C) entropy.
 - D) electrical work.
 - E) none of these.
- 29.) What is the change in the internal energy (in J) of a system that releases 1000 J of heat and does 225 J of work on the surroundings?
 - A)-10,155B)-1225C)-775D)775E)1225

Name

- 30.) What do you expect the temperature change to be for the rapid, adiabatic compression of a gas from 1.0 atm to 3.0 atm?
 - A) -10K
 - B) 100K
 - C) 0.001K
 - D) -100K
 - E) -0.001K
- 31.) A bar of hot metal is placed in water in an insulated container and the two are allowed to reach thermal equilibrium. When1.0 kg of metal at 100°C is placed in 2.0 kg of water, the temperature water bath raises from 20°C to 25°C. What is the specific heat capacity of the metal (J/g K)?
 - A) 0.5
 - B) 1.5
 - C) 0.22
 - D) 25
 - E) .025
- 32.) Which is the best estimate for the boiling point of benzene (°C) given that ΔH° of vaporization is 31 kJ/mol and ΔS° of vaporization is 90 J/mol K?
 - A) 25
 - B) 45
 - C) 65
 - D) 15
 - E) 5
- 33.) Which is the first step in a realistic experiment to determine the entropy change for a chemical reaction?
 - A) Measuring ΔH° .
 - B) Counting the microstates.
 - C) Counting the change in microstates.
 - D) Measuring how the K varies with temperature.
 - E) The entropy change cannot be measured for chemical reactions.
- 34.) The value of ΔH° for the following reaction is -3351 kJ.
 - $2 \operatorname{Al}(s) + 3O_2(g) \rightarrow 2\operatorname{Al}_2O_3(s)$

What is ΔH° for the formation of 75.0 g of Al₂O₃(s) (kJ)?

- A) $-2.51 \times 10^{?}$
- B) -1.26×10^5
- C) -2460
- D) -1230
- E) +3351

35.) Which of the following has a non-zeron ΔH_{f}° ?

- A) $O_2(l)$
- B) C(graphite)
- C) $N_2(g)$
- D) $F_2(g)$
- E) $Cl_2(g)$

36.) Which one of the following processes is endothermic?

A) $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$ B) $H_2O(g) \rightarrow H_2O(l)$ C) $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$ D) $H_2O(s) \rightarrow H_2O(l)$ E) $2Al(s) + Fe_2O_3(s) \rightarrow Al_2O_3(s) + 2Fe(l)$

37.) Which is true for the following reaction under standard conditions?

 $C_2H_6(g) \rightarrow C_2H_4(g) + H_2(g)$ ΔH° is 137 kJ and ΔS° is 120 J/K.

A) spontaneous at all temperatures

- B) spontaneous only at high temperature
- C) spontaneous only at low temperature
- D) not spontaneous at all temperatures
- E) cannot be determined

38.) Given the following

Substance	$\Delta H^{\circ}f(kJ/mol)$
$SO_2(g)$	-297
SO ₃ (g)	-396
$SO_2Cl_2(g)$	-364
$H_2SO_4(l)$	-814
$H_2O(1)$	-286

Calculate the amount of heat (in kJ) evolved when 11.25 g of SO₂ reacts according to the equation:

 $SO_2(g) + Cl_2(g) \rightarrow SO_2Cl_2(g)$

A) 100.5

- B) 8.550×10^5
- C) 47.5
- D) 11.25

E) Insufficient data are given. (this also accepted because the real answer was 11.78)

Name

- 39.) We have seen many times in lecture that heat is given off in the combustion of hydrogen gas. Which of the following is responsible for the heat ?
 - A) Breaking H-H and O-O bonds.
 - B) Breaking O-H bonds.
 - C) Forming H-H bonds and O-O bonds.
 - D) Forming O-H bonds.
 - E) Condensation of the water formed.
- 40.) What can you say about the reaction if the ratio of the C=C double bond strength to the C-C single bond strength is less than two?

- A) The reaction is exothermic.
- B) The reaction is endothermic.
- C) The reaction is spontaneous.
- D) The enthalpy change is about zero.