KEY

Chemistry 1A, Fall2003

Midterm Exam III, Version A November 13, 2003

(90 min , closed book)

Name: \qquad
SID: \qquad
TA Name: \qquad

- Write your name on every page of this exam.
- This exam is multiple choice. Fill in the Scantron form AND circle your answer on the exam.
- There are 40 multiple choice questions. 3.75 points each
- The questions can be worked in any order. Do those that you can do quickly first, then work the other questions.

Potentially useful relations:

$$
\begin{aligned}
& \mathrm{E}=\mathrm{h} \nu \\
& \lambda v=\mathrm{c} \\
& \lambda_{\text {deBroglie }}=\mathrm{h} / \mathrm{p}=\mathrm{h} / \mathrm{mv} \\
& \mathrm{p}=\mathrm{mv} \\
& \mathrm{E}_{\mathrm{kin}}=1 / 2 \mathrm{mv}^{2} \\
& \mathrm{E}_{\mathrm{kin}}(\mathrm{e}-)=\mathrm{h} \nu-\Phi=\mathrm{h} \nu-\mathrm{h} v_{0} \\
& E_{n}=-\frac{Z^{2}}{n^{2}} R_{\infty} \\
& \mathrm{PV}=\mathrm{nRT} \\
& E_{\text {kin }}=\frac{3}{2} R T \\
& \mathrm{~V}_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}}
\end{aligned}
$$

$$
\Delta \mathrm{E}=\mathrm{q}+\mathrm{w}
$$

$$
\mathrm{w}=-\mathrm{P}_{\mathrm{ext}} \Delta \mathrm{~V}
$$

$$
\Delta E=\frac{3}{2} n R \Delta T
$$

$\mathrm{N}_{0}=6.02214 \times 10^{23} \mathrm{~mol}^{-1}$
$\mathrm{R}_{\infty}=2.179874 \times 10^{-18} \mathrm{~J}$
$\mathrm{R}_{\infty}=3.28984 \times 10^{15} \mathrm{~Hz}$
$\mathrm{k}=1.38066 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
$\mathrm{h}=6.62608 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
$\mathrm{m}_{\mathrm{e}}=9.101939 \times 10^{-31} \mathrm{~kg}$
$\mathrm{c}=2.99792 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Gas Constant:
$\mathrm{R}=8.31451 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{R}=8.20578 \times 10^{-2} \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{T}(\mathrm{K})=\mathrm{T}(\mathrm{C})+273.15$
$\mathrm{F}=96,485 \mathrm{C} / \mathrm{mol}$
$1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C} 1 \mathrm{~nm}=10^{-9} \mathrm{~m}$
$1 \mathrm{~kJ}=1000 \mathrm{~J}$
$\mathrm{Cp}\left(\mathrm{H}_{2} \mathrm{O}\right)=4.184 \mathrm{~J} / \mathrm{g} \mathrm{K}$

$$
\Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{~S}^{\circ}
$$

$$
\Delta \mathrm{H}^{\circ}=\sum \Delta \mathrm{H}_{\mathrm{f}}^{\circ} \text { (products) }-\sum \Delta \mathrm{H}_{\mathrm{f}}^{\circ}(\text { reactants })
$$

$$
\Delta \mathrm{S}^{\circ}=\sum \mathrm{S}^{\circ} \text { (products) }-\sum \mathrm{S}^{\circ} \text { (reactants) }
$$

$$
\Delta \mathrm{G}^{\circ}=\sum \Delta \mathrm{G}_{\mathrm{f}}^{\circ} \text { (products) }-\sum \Delta \mathrm{G}_{\mathrm{f}}^{\circ} \text { (reactants) }
$$

$$
\mathrm{S}=\mathrm{k}_{\mathrm{B}} \ln \mathrm{~W}
$$

for $\mathrm{aA}+\mathrm{bB} \rightleftarrows \mathrm{cC}+\mathrm{dD}$

$$
Q=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \quad \text { At equilibrium, } \mathrm{Q}=\mathrm{K}
$$

$$
\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln \mathrm{~K}
$$

$$
\ln K=-\frac{\Delta H^{\circ}}{R} \frac{1}{T}+\frac{\Delta S^{\circ}}{R}
$$

$$
\Delta \mathrm{G}^{\circ}=-\mathrm{nF} \Delta \epsilon^{\circ}
$$

$$
\mathrm{pX}=-\log \mathrm{X}
$$

$$
p H=p K_{a}+\log \frac{\left[A^{-}\right]}{[H A]}
$$

Color and Wavelength of Light

$\Delta \mathbf{G}^{\circ}$ of Formation

compound	$\Delta \mathrm{G}^{\circ}(\mathrm{kJ} / \mathrm{mol})$
CO_{2}	-394.36
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-228.57
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	-910
O_{2}	0

\qquad

SECTION 1: EQUILIBRIUM

For questions $1-11$ consider the following three reactions at 298 K .
I. $2 \mathrm{SO}_{3}(\mathrm{~g}) \leftrightarrow 3 \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{~S}(\mathrm{~s}) \quad \mathrm{K}=0.225 \quad \Delta \mathrm{H}^{\circ}=+791 \mathrm{~kJ}$
II. $\mathrm{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{SO}_{2}(\mathrm{~g}) \quad \mathrm{K}=225 \quad \Delta \mathrm{H}^{\circ}=-270 \mathrm{~kJ}$
III. $2 \mathrm{SO}_{3}(\mathrm{~g}) \leftrightarrow \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g})$
1.) What is the equilibrium constant for a mixture of $\mathrm{O}_{2}, \mathrm{SO}_{3}$ and SO_{2} gas (rxn. III)?
A) 75.5
B) 112
C) 1.1×10^{4}
D) 2.5×10^{-5}
E) 0.775
2.) What is the value of the equilibrium constant for rxn \mathbf{I} if at equilibrium the flask contains 0.236 $\mathrm{atm} \mathrm{SO}_{3}, 0.500 \mathrm{~atm} \mathrm{O}_{2}$, and 0.01 g Sulfur after a temperature change.
A) 0.0909
B) 11.0
C) 1.63×10^{-5}
D) 6.25×10^{-2}
E) 2.24
3.). What change has occurred if the value of K for $\mathrm{rxn} \mathbf{I}$ is found to be 0.552 ?
A) An increase in temperature.
B) A decrease in temperature.
C) An increase in pressure.
D) An increase in volume.
E) cannot be determined.
4.) Which is a suitable expression for the reaction quotient for the formation of SO_{2} from the elements?
A) $\mathrm{P}\left(\mathrm{O}_{2}\right) / \mathrm{P}\left(\mathrm{SO}_{2}\right)$
B) $\mathrm{P}\left(\mathrm{O}_{2}\right) \mathrm{P}^{2}\left(\mathrm{SO}_{2}\right) / \mathrm{P}(\mathrm{S})$
C) $\mathrm{P}\left(\mathrm{O}_{2}\right) / \mathrm{P}^{2}\left(\mathrm{SO}_{2}\right) \mathrm{P}(\mathrm{S})$
D) $\mathrm{P}\left(\mathrm{SO}_{2}\right) / \mathrm{P}\left(\mathrm{O}_{2}\right)$
E) Nothing can be said with the information given.
5.) What is $\Delta \mathrm{H}^{\circ}$ for reaction III?
A) 333 kJ
B) 251 kJ
C) $1.7 \times 10^{3} \mathrm{~kJ}$
D) 5 kJ
E) 76 kJ

Name \qquad
6.) Which is the best arrangement of the relative enthalpies of formation of compounds $\mathrm{O}_{2}, \mathrm{SO}_{3}$, and SO_{2} ?

7.) What is the best prediction of $\Delta \mathrm{S}^{\circ}$ for reaction \mathbf{I} at 298 K ?
A) $\Delta \mathrm{S}^{\circ}>0$
B) $\Delta \mathrm{S}^{\circ}=0$
C) $\Delta \mathrm{S}^{\circ}<0$
D) $\Delta \mathrm{S}^{\circ} \leq 0$
E) $\Delta \mathrm{S}^{\circ} \geq 0$
8.) What can you say about reaction I at 298 K ?
A) It is exothermic.
B) It is spontaneous.
C) It is not spontaneous.
D) It is at equilibrium. (this was also accepted because conditions weren't specified)
E) It releases heat.
9.) The correct plot for $\ln \mathrm{K}$ vs $1 / \mathrm{T}$ for reaction \mathbf{I} would pass through which pair of points (fill in both points on scantron sheet)?

10.) From which of the following starting conditions would it be impossible for equilibrium to be achieved for reaction II?
A) Pure $\mathrm{SO}_{2}(\mathrm{~g})$.
B) A mixture of $\mathrm{SO}_{2}(\mathrm{~g}), \mathrm{O}_{2}(\mathrm{~g})$, and $\mathrm{S}(\mathrm{s})$.
C) A mixture of $\mathrm{SO}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$.
D) Pure $\mathrm{O}_{2}(\mathrm{~g})$ and $\mathrm{S}(\mathrm{s})$.
E) Equilibrium can be achieved from any of these starting conditions.
\qquad
11.) Which occurs when adding S (s) to the equilibrium described by reactions I, II and III?
A) A decrease in the pressure of $\mathrm{SO}_{3}(\mathrm{~g})$.
B) A decrease the pressure of $\mathrm{SO}_{2}(\mathrm{~g})$.
C) An increase in the value of the equilibrium constant.
D) An increase in the total pressure of the system.
E) No change in the equilibrium.

Continue with the next question:

12.) For the reaction
$\mathrm{A}(\mathrm{l})+2 \mathrm{D}(\mathrm{g}) \rightarrow 3 \mathrm{X}(\mathrm{g})+\mathrm{Z}(\mathrm{s})$
having $\Delta \mathrm{G}^{\circ}=-2400 \mathrm{~kJ}$ at $25^{\circ} \mathrm{C}$, the equilibrium mixture \qquad .
A) will consist almost exclusively of A and D.
B) will consist almost exclusively of A and Z.
C) will consist almost exclusively of X and Z .
D) will consist of significant amounts of $\mathrm{A}, \mathrm{D}, \mathrm{X}$, and Z .
E) has a composition predictable only if one knows T and $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{S}^{\circ}$.
13.) The equilibrium constant for the reaction below at $25^{\circ} \mathrm{C}$ is 4.8×10^{-6}. Calculate the equilibrium concentration ($\mathrm{mol} / \mathrm{L}$) of $\mathrm{Cl}_{2}(\mathrm{~g})$ if the initial concentration of $\mathrm{ICl}(\mathrm{g})$ is $1.33 \mathrm{~mol} / \mathrm{L}$. There is no I_{2} or Cl_{2} initially present.
$2 \operatorname{ICl}(\mathrm{~g}) \leftrightarrow \mathrm{I}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
A) 2.9×10^{-3}
B) 5.8×10^{-3}
C) 3.2×10^{-6}
D) 6.4×10^{-6}
E) 343
14.) Which of the following equilibria, will shift to the left in response to a decrease in volume?
A) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{HCl}(\mathrm{g})$
B) $2 \mathrm{SO}_{3}(\mathrm{~g}) \leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
C) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
D) $4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
E) $2 \mathrm{HI}(\mathrm{g}) \leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$
\qquad
15.) Consider the following reaction at equilibrium:

$$
2 \mathrm{CO}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-514 \mathrm{~kJ}
$$

How can the yield of $\mathrm{CO}(\mathrm{g})$ be maximized ?
A) at high temperature and high pressure
B) at high temperature and low pressure
C) at low temperature and low pressure
D) at low temperature and high pressure
E) in the presence of solid carbon
16.) Which is true for every reaction if the temperature is raised?
A) Chemical reactions favor products.
B) Chemical reactions favor reactants.
C) No change is observed.
D) Equilibrium constants increase.
E) None of these.

For the following three questions, consider the equilibrium $\mathrm{PbSO}_{4}(\mathrm{~s}) \leftrightarrow \mathrm{Pb}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}^{-2}(\mathrm{aq})$ which has a $\mathrm{K}_{\text {sp }}=1.6 \times 10^{-8}$ at 298 K
17.) What is the concentration of lead ions in water (M) when solid PbSO_{4} is present?
A) 1.6×10^{-10}
C) 1.0
D) 1.1×10^{4}
E) 22.5
18.) What is the concentration of lead ions (M) in $0.01 \mathrm{M} \mathrm{NaSO}_{4}\left(\mathrm{~K}_{\text {sp }} \sim 10^{8}\right)$ when solid PbSO_{4} is present?
A) 1.6×10^{-6}
B) 1.3×10^{-4}
C) 1.0
D) 1.1×10^{4}
E) 22.5
19.) What is $\Delta \mathrm{G}^{\circ}$ for the dissolution of lead sulfate at $298 \mathrm{~K}(\mathrm{~kJ} / \mathrm{mol})$?
A) 44
B) -13
C) 5.9
D) 1.1×10^{4}
E) 2.3×10^{-3}
\qquad

Continue with the next question:

SECTION 2: Phases of MATTER

For the following questions consider the phase diagram for water below.

20.) At which point are gas, liquid and solid all in equilibrium?
A) $(\mathrm{T} 2, \mathrm{P} 2)$
B) $(\mathrm{T} 2, \mathrm{P} 1)$
C) $(\mathrm{T} 1, \mathrm{P} 1)$
D) $(\mathrm{T} 3, \mathrm{P} 1)$
E) (T3, P3)
21.) Arrow I corresponds to:
A) Constant pressure
B) Equilibrium
C) Sublimation
D) Condensation
E) Melting
22.) Along the curve containing the points (T2, P2) and (T3, P3):
A) Solid, liquid and gas are all in equilibrium.
B) Liquid and gas are in equilibrium.
C) The vapor pressure is constant.
D) The gas cannot be condensed at any pressure.
E) Only the solid phase is observed.
23.) At the point $(\mathrm{T} 2, \mathrm{P} 3)$ the substance is:
A) In equilibrium between liquid and gas.
B) A liquid.
C) A gas.
D) A supercritical fluid.
E) A solid.
\qquad
24.) Which is true at temperatures above T3?
A) Solid, liquid and gas are all in equilibrium.
B) Liquid and gas are in equilibrium.
C) The vapor pressure is constant.
D) The gas cannot be condensed at any pressure.
E) Only the solid phase is observed.
25.) Which intermolecular force predominates in the condensation of water?
A) H-bonding
B) Van der Wals
C) London
D) Ion-Ion
E) Dipole-Ion

Continue with the next question:

SECTION 3: THERMODYNAMICS

26.) Which one of the following is always positive when a spontaneous process occurs?
A) Δ Ssystem
B) $\Delta S_{\text {surroundings }}$
C) $\Delta S_{\text {universe }}$
D) $\Delta \mathrm{H}_{\text {universe }}$
E) $\Delta H_{\text {surroundings }}$
27.) Which is true of the entropy of the universe?
A) conserved.
B) continually decreasing.
C) continually increasing.
D) equal to zero.
E) equal to the energy, E.
28.) Which is a state function (mark all that apply)?
A) flame heating.
B) enthalpy.
C) entropy.
D) electrical work.
E) none of these.
29.) What is the change in the internal energy (in J) of a system that releases 1000 J of heat and does 225 J of work on the surroundings?
A) $-10,155$
B) -1225
C) -775
D) 775
E) 1225
\qquad
30.) What do you expect the temperature change to be for the rapid, adiabatic compression of a gas from 1.0 atm to 3.0 atm ?
A) -10 K
B) 100 K
C) 0.001 K
D) -100 K
E) -0.001 K
31.) A bar of hot metal is placed in water in an insulated container and the two are allowed to reach thermal equilibrium. When 1.0 kg of metal at $100^{\circ} \mathrm{C}$ is placed in 2.0 kg of water, the temperature water bath raises from $20^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$. What is the specific heat capacity of the metal ($\left.\mathrm{J} / \mathrm{g} \mathrm{K}\right)$?
A) 0.5
B) 1.5
C) 0.22
D) 25
E) .025
32.) Which is the best estimate for the boiling point of benzene $\left({ }^{\circ} \mathrm{C}\right)$ given that $\Delta \mathrm{H}^{\circ}$ of vaporization is $31 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{S}^{\circ}$ of vaporization is $90 \mathrm{~J} / \mathrm{mol} \mathrm{K}$?
A) 25
B) 45
C) 65
D) 15
E) 5
33.) Which is the first step in a realistic experiment to determine the entropy change for a chemical reaction?
A) Measuring $\Delta \mathrm{H}^{\circ}$.
B) Counting the microstates.
C) Counting the change in microstates.
D) Measuring how the K varies with temperature.
E) The entropy change cannot be measured for chemical reactions.
34.) The value of $\Delta \mathrm{H}^{\circ}$ for the following reaction is -3351 kJ .
$2 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
What is $\Delta \mathrm{H}^{\circ}$ for the formation of 75.0 g of $\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})(\mathrm{kJ})$?
A) $-2.51 \times 10^{?}$
B) -1.26×10^{5}
C) -2460
D) -1230
E) +3351

Name \qquad
35.) Which of the following has a non-zeron $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$?
A) $\mathrm{O}_{2}(\mathrm{l})$
B) C(graphite)
C) $\mathrm{N}_{2}(\mathrm{~g})$
D) $\mathrm{F}_{2}(\mathrm{~g})$
E) $\mathrm{Cl}_{2}(\mathrm{~g})$
36.) Which one of the following processes is endothermic?
A) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
B) $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
C) $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
D) $\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
E) $2 \mathrm{Al}(\mathrm{s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Fe}(\mathrm{l})$
37.) Which is true for the following reaction under standard conditions?
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
$\Delta \mathrm{H}^{\circ}$ is 137 kJ and $\Delta \mathrm{S}^{\circ}$ is $120 \mathrm{~J} / \mathrm{K}$.
A) spontaneous at all temperatures
B) spontaneous only at high temperature
C) spontaneous only at low temperature
D) not spontaneous at all temperatures
E) cannot be determined
38.) Given the following

Substance	$\Delta \mathrm{H}^{\circ} \mathrm{f}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{SO}_{2}(\mathrm{~g})$	-297
$\mathrm{SO}_{3}(\mathrm{~g})$	-396
$\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$	-364
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l})$	-814
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	-286

Calculate the amount of heat (in kJ) evolved when 11.25 g of SO_{2} reacts according to the equation:
$\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$
A) 100.5
B) 8.550×10^{5}
C) 47.5
D) 11.25
E) Insufficient data are given. (this also accepted because the real answer was 11.78)
\qquad
39.) We have seen many times in lecture that heat is given off in the combustion of hydrogen gas. Which of the following is responsible for the heat?
A) Breaking $\mathrm{H}-\mathrm{H}$ and $\mathrm{O}-\mathrm{O}$ bonds.
B) Breaking $\mathrm{O}-\mathrm{H}$ bonds.
C) Forming $\mathrm{H}-\mathrm{H}$ bonds and $\mathrm{O}-\mathrm{O}$ bonds.
D) Forming $\mathrm{O}-\mathrm{H}$ bonds.
E) Condensation of the water formed.
40.) What can you say about the reaction if the ratio of the $\mathrm{C}=\mathrm{C}$ double bond strength to the $\mathrm{C}-\mathrm{C}$ single bond strength is less than two?

A) The reaction is exothermic.
B) The reaction is endothermic.
C) The reaction is spontaneous.
D) The enthalpy change is about zero.

