
SID: _____

PRINT YOUR

NAME CLEARLY!!

Signature: _____

Final Exam

11AUG08

Chem 3BL Su08 Neil O.L. Viernes

This exam has 9 pages; make sure you have them all.

Please place answers in designated spaces. **Please write clearly.** Messy or ambiguous answers <u>will not be</u> <u>graded</u>.

This exam is 60 minutes long. No clarifying questions will be answered by the GSI's after the exam begins.

Mark one of the following. If you are enrolled in Chem 3BL, mark off your laboratory section.

- ____ Completing I Grade
- ____ 101 Michael Chiang
- ____ 102 Daniel Cordaro
- ____ 103 Michael Gribble
- ____ 104 Elton Chan
- ____ 105 Ying Zhang
- ____ 106 Greg Dallinger
- ____ 201 Joshua Wong
- ____ 202 Margaret Wei
- ____ 203 Steven Vu
- ____ 204 Aaron Low
- ____ 205 Brian Ikkanda
- ____ 206 Silvio Levy

1) (8 pts)

The following reaction was conducted in lab. Show your work for the calculations below. $OMe \qquad OMe \qquad OMe \qquad OMe \qquad OMe \qquad OMe \qquad OBe \qquad$

What is the molecular weight of the starting material (1)?

If 0.25g of the starting material was added to the reaction and 1.1 equivalents of HNO₃ is necessary, calculate how many grams of nitric acid would be needed for the reaction.

If 0.25g of the starting material (1) was used in the reaction and it was the limiting reagent, calculate the theoretical yield.

Using the amount of starting material (1) indicated above and assuming that (1) is the limiting reagent, 0.20g of the product (2) was recovered. Calculate the yield of the reaction.

2) (12 pts)

Impurity (3) was also recovered from the reaction. ¹H NMR spectra for both of the compounds (2) and (3) were obtained but were not labeled. Determine how you would differentiate between the proton spectra for compounds (2) and (3).

Draw the splitting tree for a quartet-triplet with a coupling constant of 6 and 2 respectively. Also provide the expected ratios for each peak.

														1
														1
														1
														1
														1
													 	 1
														1

The reaction mixture was neutralized and 2 mL of 1 M NaOH was added. Extraction was conducted with 2 mL of ether.

Identify layers (ether or aqueous) and indicate where you would expect compound (2) and (3).

Indicate if compounds (2) or (3) would have the largest or smallest R_f value if TLC's were taken with the following solid phases.

SiO₂ C₈

(2)

(3)

How would you change the solvent system to decrease the R_f of compound (3) with SiO₂ as the solid phase?

4) (6 pts)

Identify the best technique to purify the product boxed from each mixture.

A = SiO₂ Column Chromatography

B = C₈ Column Chromatography

E = Size Exclusion Chromatography F = Affinity Chromatography

