Chemistry 1A, Fall 2003

Midterm 2 Oct 14, 2003 (90 min, closed book)

Name:				

SID:_____

TA Name:_____

- This exam has 45 multiple choice questions.
- Fill in the Scantron form AND circle your answer on the exam.
- Each question is worth 3.34 points.

Note:

- The questions on this exam do not depend on each other. They may be answered in any order.
- All the questions are equally weighted. Answer those you can quickly and go back to those that require more thought.
- Some questions may seem obvious or too simple. They are. There are no 'trick' questions.
- Questions that contain 'mark all that apply' may require you to mark more than one answer to get credit for that question.

• Potentially useful relations:

$$E = hv$$

$$\lambda v = c$$

$$\lambda_{deBroglie} = h / p = h / mv$$

$$p = mv$$

$$E_{kin} = \frac{1}{2} mv^{2}$$

$$E_{kin} (e) = hv - \Phi = hv - hv_{0}$$

$$E_{n} = -\frac{Z^{2}}{n^{2}} R_{\infty}$$

$$PV = nRT$$

$$E_{kin} = \frac{3}{2} RT$$

$$v_{rms} = \sqrt{\frac{3RT}{M}}$$

 $\Delta E = q + w$ w = - P_{ext} \Delta V $\Delta E = \frac{3}{2} nR \Delta T$

$$N_{0} = 6.02214 \times 10^{23} \text{ mol}^{-1}$$

$$R_{\infty} = 2.179874 \times 10^{-18} \text{ J}$$

$$R_{\infty} = 3.28984 \times 10^{15} \text{ Hz}$$

$$k = 1.38066 \times 10^{-23} \text{ J K}^{-1}$$

$$h = 6.62608 \times 10^{-34} \text{ J s}$$

$$m_{e} = 9.101939 \times 10^{-31} \text{ kg}$$

$$c = 2.99792 \times 10^{8} \text{ m s}^{-1}$$
Gas Constant:

$$R = 8.31451 \text{ J K}^{-1} \text{ mol}^{-1}$$

$$R = 8.20578 \times 10^{-2} \text{ L atm K}^{-1} \text{ mol}^{-1}$$

$$T (K) = T (C) + 273.15$$

$$F = 96,485 \text{ C / mol}$$

$$1 \text{ V} = 1 \text{ J / C } 1 \text{ nm} = 10^{-9} \text{ m}$$

$$1 \text{ kJ} = 1000 \text{ J}$$

$$\begin{split} \Delta G^\circ &= \Delta H^\circ \text{ - } T\Delta S^\circ \\ \Delta H^\circ &= \Sigma \ \Delta H^\circ{}_{\rm f} \ (\text{products}) \text{ - } \Sigma \ \Delta H^\circ{}_{\rm f} \ (\text{reactants}) \\ \Delta S^\circ &= \Sigma \ S^\circ \ (\text{products}) \text{ - } \Sigma \ S^\circ \ (\text{reactants}) \\ \Delta G^\circ &= \Sigma \ \Delta G^\circ{}_{\rm f} \ (\text{products}) \text{ - } \Sigma \ \Delta G^\circ{}_{\rm f} \ (\text{reactants}) \\ S &= k_B ln W \end{split}$$

for aA + bB
$$\rightleftharpoons$$
 cC + dD

$$Q = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$
 At equilibrium, Q = K

$$\Delta G^{\circ} = -RT ln K$$

$$ln K = -\frac{\Delta H^{\circ}}{R} \frac{1}{T} + \frac{\Delta S^{\circ}}{R}$$

$$\Delta G^{\circ} = -nF\Delta C^{\circ}$$

$$pX = -\log X$$

$$pH = pK_a + \log\frac{\lfloor A \rfloor}{\lfloor HA \rfloor}$$

Color and Wavelength of Light

Wavelength (nm)						
800	600	400	200			
I	II		1			

Visible

IR

 ΔG° of Formation

compound	$\Delta G^{\circ} (kJ / mol)$
CO ₂	-394.36
$H_2O(g)$	-228.57
$C_6H_{12}O_6$	-910
O ₂	0

UV

SECTION 1: PERIODIC TABLE

- 1.) Why does the ionization energy increase when electrons are consecutively removed from an atom?
 - A) the outermost electron experiences a higher effective nuclear charge
 - B) the remaining electrons are held more strongly
 - C) atomic radius is decreasing
 - D) all of the above
 - E) none of the above

For the next two questions consider the ionization energy of sodium is 496 kJ/mol and the electron affinity of Cl is -349 kJ/mol.

2.) What is the approximate net energy change in producing Na⁺ and Cl⁻ from Na and Cl atoms (kJ/mol)?

A) 150 B) 0 C) -323 D) -510 E) -1776

3.) What is the net energy change in making the NaCl molecule (kJ/mol) from the ions?

	A) -642	B) 0	C) 323	D) 510	E) 1776
		Cont	tinue with the n	ext question:	
For	the next four	questions c	onsider the f	ollowing ator	ns Br, Sn, Sb, Te, I.
4.)	Which has the	alargest atomi	c radius?		
	A) Br	B) Sn	C) Sb	D) Te	E) I
5.)	Which is the r	nost paramagr	netic?		
	A) Br	B) Sn	C) Sb	D) Te	E) I
6.)	Which has the	argest ioniza	tion energy?		
	A) Br	B) Sn	C) Sb	D) Te	E) I
7.)	Which has the	largest electro	onegativity?		
	A) Br	B) Sn	C) Sb	D) Te	E) I

SECTION 1: CHEMICAL BONDING

For the following ten questions, consider the lowest energy Lewis structure for the following molecules/ions: SO_3 , PH_3 , SCN^{-1} (you may want to draw the Lewis structures in the space provided, the central atom is highlighted).

8.) Which is transparent to microwaves (mark all that apply)?

	A) PH ₃	B) SCN ⁻¹	C) SO ₃	D) all three	E) none
9.)	What is the O-S	S-O bond angle	in SO ₃ ?		
	A) 90	B) 108	C) 110	D) 120	E) 180
10.)	What is the H-I	P-H bond angle	in PH ₃ ?		
	A) 90	B) 108	C) 110	D) 120	E) 180
11.)	What is the bor	nd angle in SCN	$N^{-1}?$		
	A) 90	B) 108	C) 110	D) 120	E) 180
12.)	What is the oxi	dation number	of S in SO ₃ ?		
	A) -6	B) -2	C) 0	D) +2	E) +6
13.)	What is the SO	bond order in	SO ₃ ?		
	A) -2	B) -1	C) 0	D) 1	E) 2

- 14.) Which is the best description of the orbital overlap in the P-H bond in PH₃ (the 'z' axis is the internuclear axis)?
 - p_z on P with sp^2 on H A)
 - B)
 - C)
 - p_z on P with s on H sp² on P with p_z on H sp² on P with p_z on H D)
 - sp^3 on P with s on H E)

15.) Which molecule is chiral?

- B) SCN⁻¹ A) PH₃ C) SO_3 D) all three E) none
- 16.) If you could connect the atoms in any order, how many different structural isomers are possible for SCN^{-1} ?
 - A) 1 B) 2 C) 3 D) 4 E)5
- 17.)What is the shape of PH₃?
 - A) Linear.
 - B) Bent.
 - Trigonal pyramidal. C)
 - Square planar. D)
 - Tetrahedral. E)

Continue with the next question:

For the following five questions match the atomic orbitals with the molecular orbital they would form.

Question	Atomic Orbitals		Molecular Orbitals
18.) E		A	
19.) A		В	
20.) B		С	
21.) D	88	D	
22.) C	88	E	

23.) Which of the molecular orbitals in the preceding table would have the highest energy?

A)A B)B C)C D)D E)E

24.) If butyric acid (shown right) smells sour, which one of the following compounds is also likely to smell sour?

- 25.) In which of the following molecules is the carbon-carbon bond likely to be the strongest?
 - A) H₃CCH₃
 - B) H₂CCH₂
 - C) CH₃CH₂F
 - D) HCCH
 - E) H₂CO
- 26.) Which of the following mixtures of atomic orbitals best describes the σ bonding orbital in H₂?

A) s + s B) s - s C) $p_z + p_z$ D) $p_x - p_z$ E) $p_x + p_y$

27.) Which of the following mixtures of atomic orbitals best describes the σ bonding orbitals in HeH⁺?

A) s + s B) s - s C) $p_z + p_z$ D) $p_x - p_z$ E) $p_x + p_y$

28.) Which of the following mixtures of atomic orbitals best describes the σ_{2p} bonding orbitals in C_2 ?

A) s + s B) $s + p_z$ C) $p_z + p_z$ D) $p_z - p_z$ E) $p_x + p_y$

- 29.) What is the bond order of He_2^+ .
 - A) 0 B) 1/2 C) 1 D) 1 1/2 E) 2

Use the following molecular orbital energy diagram for the next three questions.

$$\begin{array}{c}
 \overline{2p\sigma^{*}} \\
 \overline{2p\pi^{*}} \\
 \overline{2p\pi} \\
 \overline{2p\sigma} \\
 \overline{2p\sigma} \\
 \overline{2s\sigma^{*}} \\
 \overline{2s\sigma}
 \end{array}$$

30.) How many unpaired electrons are in O_2^+ ?

A) 0	B) 1	C) 2	D) 3	E) 4
) -		-)) -	,

31.) What is the bond order of OF?

A) 0	B) 1/2	C) 1	D) 1 1/2	E) 2
------	--------	------	----------	------

32.) Which of the following is not paramagnetic?

A) O_2^+ B) OF C) NO D) OF E) CO^+

SECTION 3: THE BEHAVIOR OF GASSES

Unless stated otherwise, the system for the next seven questions is a rigid 22.4 L flask containing an equal number of moles of gaseous N_2 molecules and Cl atoms at 1.00 atm and 25.0°C.

33.) What is the total number of moles of gas in the flask?

A) 0.25 B) 0.50 C) 1.0 D) 1.50 E) 2.00

34.) What is the partial pressure of N_2 (atm)?

A) 0.25 B) 0.50 C) 0.75 D) 1.00 E) 2.00

35.) What is the pressure in the flask if the temperature were raised to 100° C?

A) 0.26 B) 0.54 C) 1.25 D) 1.36 E) 2.11

36.) What is the total pressure in the flask if one mole of Ar gas were to be added at constant temperature (25°C)?

A) 0.25 B) 0.50 C) 0.75 D) 1.00 E) 2.00

37.) If all the Cl atoms were to react and form Cl₂ molecules what would be the pressure in the flask containing only N₂ and Cl₂ (constant T and V) (25°C)?

A) 0.25 B) 0.50 C) 0.75 D) 1.00 E) 2.00

38.) Which has the highest root mean squared velocity when there is a mixture of Cl, Cl₂ and N₂(25°C)?

A) Cl B) N_2 C) Cl₂ D) all are the same

- 39.) Which has the highest molar kinetic energy when there is a mixture of Cl, Cl₂ and N₂ (25°C)?
 - A) Cl B) N_2 C) Cl_2 D) all are the same

Continue with the next question:

For the next questions, choose the plot that best describes the relationship between the variables listed (y vs. x).

