1.) In the combustion of butane (C 4 H 10) in excess O 2 to give CO 2 and H 2 O , how many moles of CO 2 are formed from each mole of butane?
A) 1
B) 2
C) 3
D) 4
E) 5
2.) If 1 mole of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ reacts with 1 mole of O_{2}, according to the reaction below,

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

which is the limiting reagent in the reaction?
A) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
B) O_{2}
C) CO_{2}
D) $\mathrm{H}_{2} \mathrm{O}$
E) none of these
3.) Which of the following compounds exhibit ionic bonding? Mark all that apply.
A) Cl_{2}
B) CO_{2}
C) CH_{4}
D) RbCl
E) $\mathbf{M g B r}_{2}$
4.) 6.) Which of the following must be the same before and after a chemical reaction? Mark all that apply.
A) The total mass.
B) The total pressure.
C) The total number of molecules.
D) The total number of moles.
E) The total number of atoms (including those in molecules).
5.) Which of the following contains the most molecules?
A) $5.0 \mathrm{~g} \mathrm{CO}_{2}$
B) $5.0 \mathrm{~g} \mathrm{O}_{3}$
C) $5.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
D) 5.0 g CO
E) 5.0 g Xe
6.) Which difluoropropane $\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~F}_{2}\right)$ molecule is chiral? (note: the H atoms are not shown)
A.) $\stackrel{\stackrel{F}{\mathrm{~F}}}{\stackrel{\mathrm{~F}}{\mathrm{~F}}}-\mathrm{C}-\mathrm{C}$
B.) $\stackrel{\stackrel{F}{\mathrm{~F}} \stackrel{\mathrm{~F}}{\mathrm{C}}-\stackrel{1}{\mathrm{C}}-\mathrm{C}}{ }$
C.) $\stackrel{\stackrel{F}{\mathrm{~F}}}{\stackrel{\mathrm{C}}{\mathrm{C}}-\mathrm{C}-\stackrel{\stackrel{F}{\mathrm{C}}}{\mathrm{C}}}$
D.)

7.) 10) Which of the following compounds contains at least one purely covalent bond (\approx 0% ionic character)?
A) CHCl_{3}
B) $\mathrm{MnO}_{4}{ }^{2-}$ anion C) NaI
D) HSO_{2}
E) $\mathrm{N}_{3}{ }^{-}$anion
8.) The $\mathrm{H}-\mathrm{N}-\mathrm{H}$ angle in ammonia $\left(\mathrm{NH}_{3}\right)$ is:
a) $<100^{\circ}$
b) $>120^{\circ}$
c) $=109.5^{\circ}$
d) between 109.5° and 120°
e) between 100° and 109.5°
9.) The H-N-H angle in the ammonium cation $\left(\mathrm{NH}_{4}{ }^{+}\right)$is:
a) $<100^{\circ}$
b) $>120^{\circ}$
c) $=109.5^{\circ}$
d) between 109.5° and 120°
e) between 100° and 109.5°
10.) Which of the following is isoelectronic with N_{2} ?
a) NaCl
b) O_{2}
c) Cl_{2}
d) CO
e) H_{2}

Short Answer:

1.) Arrange the following in order of decreasing mass:
4.85×10^{22} molecules of $\mathrm{BF}_{3} \quad 0.5$ mole of O_{2} gas $\quad 3.2$ grams of $\mathrm{H}_{2} \mathrm{O}$

| $\underline{0.5}$ mole of O_{2} gas | $>\underline{4.85 \times 10^{22} \text { molecules of } \mathrm{BF} \underline{\underline{3}}}>\underline{\underline{3.2} \text { grams of } \mathrm{H}_{2} \underline{\mathrm{O}}}$ |
| :---: | :---: | :---: |
| greatest mass | smallest mass |

2.) For each molecule indicate the steric \# of the central atom, the shape, and the presence or absence of a dipole moment:

Shapes
A. Linear
B. V-shaped/Bent
C. Trigonal Planar
D. Pyramidal
E. Tetrahedral
F. Trigonal Bipyramidal
G. Octahedral
H. T-shaped

Molecule	Workspace	Steric \#	Shape	Dipole (Y or N)
PCL6-		$\mathbf{6}$	\mathbf{G}	\mathbf{N}
BeCl 2		2	\mathbf{A}	\mathbf{N}
SiH 4		4	\mathbf{E}	\mathbf{N}
ClO4-		$\mathbf{4}$	\mathbf{E}	\mathbf{N}
NO2-		$\mathbf{5}$	\mathbf{H}	\mathbf{Y}
ClF3			\mathbf{Y}	

3.) A hydrocarbon of molecular weight 26 is burned to yield CO 2 and H 2 O . The mass spectrum of the products is shown below:

A. Write a balanced equation for the reaction.

$$
\mathrm{C}_{2} \mathrm{H}_{2}+3 / 2 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathbf{0}
$$

B. Draw the Lewis Electron Dot Structure for the hydrocarbon.

C. Use VSEPR to determine the shape of the molecule. In this molecule, what is the largest number of atoms in a single plane?

The molecule is planar. All six atoms are in a single plane.
4.) A naturally abundant sample of an element is analyzed in a mass spectrometer, yielding the following spectrum:

A. For each peak, what are the Atomic Number, the number of protons and the number of neutrons.

First peak: Atomic number 10, 10 protons, 10 neutrons
Second peak: Atomic number 10, 10 protons, 12 neutrons
B. What is the atomic weight of the naturally abundant element?
20.180
C. What is the element?
neon (Ne)

