Part 1: Multiple Choice. (5 pts each, 40 pts total)

Instructions: Bubble in the correct answer on your ScantronTM form AND circle the answer on your exam. Each question has one correct answer.

The answer to question 1 is **A**. Bubble in **A** on your ScantronTM form. 1.)

To which orbital does the plot of $|\psi|^2$ vs ϕ correspond? 2.)

- A.) 1s
- B.) 2s
- C.) 2p_x
- **D.)** 2p_y
- E.) 2p_z

The ionization of which with UV light at 90 nm will produce electrons with the longest de Broglie 3.) wavelength?

- A.) H (1s)
- B.) H (2s)
- C.) H (4s)
- D.) $He^{+}(4s)$ E.) $He^{+}(8s)$

Identify the atom or ion with the electronic configuration [Ne]3s3p⁶? 4.)

- **A.)** Ar⁺
- B.) K⁺
- C.) Ar
- D.) K
- E.) C1⁻

Which has the largest atomic or ionic radius? **5.)**

- $A.) Ar^+ B.) K^+$
- C.) Ar
- D.) K
- E.) C1⁻

- **6.)** Which is the most electronegative?
 - A.) H
- B.) Na
- C.) K
- D.) Cl
- E.) Br

- 7.) Which is *not* paramagnetic in its ground state?
 - A.) O
- B.) O⁻
- C.) O^{2-}
- D.) O₂
- E.) O₂⁻
- **8.)** After diving, which ascent poses the gravest danger to a diver holding his or her breath?
 - A.) 10m→0m
- B.) $20m\rightarrow 10m$
- C.) $40m\rightarrow 20m$
- 1 atm water 10 m

air

- D.) $60m\rightarrow30m$
- E.) 100m→40m

- 10 m
- **9.)** The atoms or molecules of which ideal gas have the greatest average kinetic energy?
 - A.) Ar at 200 °C
- B.) He at 400 °C
- C.) He at 100 °C

- D.) H₂ at 200 °C
- E.) H₂ at 100 °C

Part 2: Short Answer Problems (105 pts total)

Instructions: Enter answers in the boxes provided. Show your work and justify your answer.

(25 pts)

- 1.) Consider the H atom and He⁺ ion.
- a) What is the maximum wavelength of light that will ionize H(2s)?

$$E = hc / \lambda = -R_{\infty}(Z^2 / n^2)$$

$$\lambda \,=\, h\; c\; n^2\; /\; R_\infty\; Z^2\; =\; 364\; nm$$

Answer: 364 nm

b) Light of what wavelength will induce the $n=4 \rightarrow n=8$ transition in He⁺?

$$\Delta E = -R_{\infty} Z^{2} (1/n_{f}^{2} + 1/n_{i}^{2})$$

$$\Delta E = h c /\lambda$$

$$\lambda = h c / (-R_{\infty} Z^2) (1/n_f^2 + 1/n_i^2)$$

= 486 nm

Answer: 486 nm

(30 pts)

- 2.) Consider an atom of the element aluminum (Al) in its ground state.
- a) Write the electron configuration for an atom of Al.

Answer: [Ne] 3s² 3p¹

b) Write down the values of the quantum numbers for an electron in the highest occupied orbital.

n: $\frac{3}{1}$ l: $\frac{1}{1}$ m₁: $\frac{-1 \text{ or } 0 \text{ or } 1}{1}$ m_s: $\frac{-\frac{1}{2} \text{ or } \frac{1}{2}}{1}$

c) Sketch the highest occupied atomic orbital and indicate number and type of nodes.

2 nodes total:

1 angular node 1 radial node

(25 pts)

- 3.) Consider 4.4 g of a hydrocarbon (hc) gas with the empirical formula C_3H_8 .
- a) The hydrocarbon fills a balloon to 0.56 L at 4.4 atm and 300 K. What is the molecular formula of the hydrocarbon?

$$PV = nRT$$
; $n = mass/M$
 $PV = (mass/M)RT$

$$M = \text{mass } R T / P V = 44 \text{ g/mol}$$

Answer: C₃H₈

b) Shown is a plot of the molecular speed distribution, F(v), and v_{rms} for CO_2 at 300 K. Sketch F(v) and indicate v_{rms} for the hydrocarbon gas at 300 K and 600 K.

(25 pts)

- 4.) Two sunscreen products (X and Y) have the following extinction coefficients, ε , at 310 nm: $X = 3.0 \text{ cm}^2/\text{g}$ and $Y = 1.0 \text{ cm}^2/\text{g}$. For the following questions, the absorbance should be calculated for a 1 cm sample path length.
- a) What is the absorbance of a 0.1 g/mL sample of X?

$$A = \varepsilon l c = 0.3$$

Answer: 0.3

b) A 0.10 g/mL sample of either X or Y is placed in the spectrometer. The measured ratio of the intensity of the transmitted light to the intensity of the incident light is 0.80 at 310 nm. Is the sample sunscreen X or Y?

$$A = \log (I_o / I_t) = \varepsilon l c$$

$$\varepsilon = [\log (I_o/I_t)]/lc = 1.0 \text{ cm}^2/\text{g}$$

Answer:

