Sample Midterm 2 Exam

Part 1: Multiple Choice.

(5 pts each, 40 pts total)
Instructions: Bubble in the correct answer on your Scantron ${ }^{\text {TM }}$ form AND circle the answer on your exam. Each question has one correct answer.
1.) The answer to question 1 is \mathbf{A}. Bubble in \mathbf{A} on your Scantron ${ }^{\text {TM }}$ form.
2.) To which orbital does the plot of $|\psi|^{2}$ vs ϕ correspond?
A.) 1 s
B.) 2 s
C.) $2 p_{x}$
D.) $\mathbf{2} \mathbf{p}_{\mathrm{y}}$
E.) $2 p_{z}$

3.) The ionization of which with UV light at 90 nm will produce electrons with the longest de Broglie wavelength?
A.) H (1s)
B.) $\mathrm{H}(2 \mathrm{~s})$
C.) $\mathrm{H}(4 \mathrm{~s})$
D.) $\mathrm{He}^{+}(4 \mathrm{~s})$
E.) $\mathrm{He}^{+}(8 \mathrm{~s})$
4.) Identify the atom or ion with the electronic configuration $[\mathrm{Ne}] 3 \mathrm{~s} 3 \mathrm{p}^{6}$?
A.) $\mathbf{A r}$
B.) K^{+}
C.) Ar
D.) K
E.) Cl^{-}
5.) Which has the largest atomic or ionic radius?
A.) Ar^{+}
B.) K^{+}
C.) Ar
D.) K
E.) Cl^{-}
\qquad
6.) Which is the most electronegative?
A.) H
B.) Na
C.) K
D.) $\mathbf{C l}$
E.) Br
7.) Which is not paramagnetic in its ground state?
$-\sigma_{2 p_{z}}^{*}$
A.) O
B.) O^{-}
C.) O^{2-}
D.) O_{2}
E.) O_{2}^{-}
$--\pi_{2 p}$
$=\sigma_{2 \mathrm{~s}}^{*}$
O_{2}
8.) After diving, which ascent poses the gravest danger to a diver holding his or her breath?

air	
1 atm mmm	mann
water	10 m
2 atm	
	10 m
3 atm	

9.) The atoms or molecules of which ideal gas have the greatest average kinetic energy?
A.) Ar at $200{ }^{\circ} \mathrm{C}$
B.) He at $400^{\circ} \mathrm{C}$
C.) He at $100^{\circ} \mathrm{C}$
D.) H_{2} at $200{ }^{\circ} \mathrm{C}$
E.) H_{2} at $100^{\circ} \mathrm{C}$
\qquad

Part 2: Short Answer Problems (105 pts total)

 Instructions: Enter answers in the boxes provided. Show your work and justify your answer.
(25 pts)

1.) Consider the H atom and He^{+}ion.
a) What is the maximum wavelength of light that will ionize $\mathrm{H}(2 \mathrm{~s})$?

$$
\begin{aligned}
& \mathrm{E}=\mathrm{hc} / \lambda=-\mathrm{R}_{\infty}\left(\mathrm{Z}^{2} / \mathrm{n}^{2}\right) \\
& \lambda=\mathrm{hc} \mathrm{n}^{2} / \mathrm{R}_{\infty} \mathrm{Z}^{2}=364 \mathrm{~nm}
\end{aligned}
$$

Answer:
364 nm
b) Light of what wavelength will induce the $\mathrm{n}=4 \rightarrow \mathrm{n}=8$ transition in He^{+}?

$$
\begin{aligned}
& \Delta \mathrm{E}=-\mathrm{R}_{\infty} \mathrm{Z}^{2}\left(1 / \mathrm{n}_{\mathrm{f}}^{2}+1 / \mathrm{n}_{\mathrm{i}}^{2}\right) \\
& \Delta \mathrm{E}=\mathrm{hc} / \lambda \\
& \begin{aligned}
\lambda & =\mathrm{hc} /\left(-\mathrm{R}_{\infty} \mathrm{Z}^{2}\right)\left(1 / \mathrm{n}_{\mathrm{f}}^{2}+1 / \mathrm{n}_{\mathrm{i}}^{2}\right) \\
& =486 \mathrm{~nm}
\end{aligned}
\end{aligned}
$$

Answer:
486 nm
(30 pts)
2.) Consider an atom of the element aluminum (Al) in its ground state.
a) Write the electron configuration for an atom of Al .

Answer:
[Ne] $3 s^{2} 3 p^{1}$
b) Write down the values of the quantum numbers for an electron in the highest occupied orbital.

$\mathrm{n}: \mathbf{3}$	$\mathrm{l}: 1$
$\mathrm{~m}_{\mathrm{l}}:$	$\mathbf{- 1}$ or $\mathbf{0}$ or
$\mathbf{1}$	$\mathrm{m}_{\mathrm{s}}:$
$-1 / 2$	or $1 / 2$

c) Sketch the highest occupied atomic orbital and indicate number and type of nodes.

2 nodes total:
1 angular node
1 radial node

\qquad
(25 pts)
3.) Consider 4.4 g of a hydrocarbon (hc) gas with the empirical formula $\mathrm{C}_{3} \mathrm{H}_{8}$.
a) The hydrocarbon fills a balloon to 0.56 L at 4.4 atm and 300 K . What is the molecular formula of the hydrocarbon?

$$
\begin{aligned}
& P V=n R T ; \quad n=\operatorname{mass} / M \\
& P V=(\text { mass } / M) R T \\
& M=\operatorname{mass} R T / P V=44 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Answer:
$\mathrm{C}_{3} \mathrm{H}_{8}$
b) Shown is a plot of the molecular speed distribution, $\mathrm{F}(\mathrm{v})$, and $\mathrm{v}_{\mathrm{rms}}$ for CO_{2} at 300 K . Sketch $\mathrm{F}(\mathrm{v})$ and indicate $\mathrm{v}_{\mathrm{rms}}$ for the hydrocarbon gas at 300 K and 600 K .
CO_{2} at 300 K

hc at 300 K
$\mathrm{v}(\mathrm{m} / \mathrm{s})$
hc at 600 K

(25 pts)

4.) Two sunscreen products (X and Y) have the following extinction coefficients, ε, at 310 nm : $\mathrm{X}=3.0 \mathrm{~cm}^{2} / \mathrm{g}$ and $\mathrm{Y}=1.0 \mathrm{~cm}^{2} / \mathrm{g}$. For the following questions, the absorbance should be calculated for a 1 cm sample path length.
a) What is the absorbance of a $0.1 \mathrm{~g} / \mathrm{mL}$ sample of X ?

$$
A=\varepsilon l c=0.3
$$

Answer:
0.3
b) A $0.10 \mathrm{~g} / \mathrm{mL}$ sample of either X or Y is placed in the spectrometer. The measured ratio of the intensity of the transmitted light to the intensity of the incident light is 0.80 at 310 nm . Is the sample sunscreen X or Y ?

$$
\begin{aligned}
& A=\log \left(\mathbf{I}_{0} / \mathbf{I}_{t}\right)=\varepsilon l c \\
& \varepsilon=\left[\log \left(\mathbf{I}_{0} / \mathbf{I}_{t}\right)\right] / l c=1.0 \mathrm{~cm}^{2} / \mathrm{g}
\end{aligned}
$$

Answer:

