Sample Midterm 2 Exam

Part 1: Multiple Choice.
(5 pts each, 40 pts total)

Instructions: Bubble in the correct answer on your Scantron™ form AND circle the answer on your exam. Each question has one correct answer.

1.) The answer to question 1 is **A**. Bubble in **A** on your Scantron™ form.

2.) To which orbital does the plot of $|\psi|^2$ vs ϕ correspond?

A.) 1s
B.) 2s
C.) 2p_x
D.) 2p_y
E.) 2p_z

![Graph of $|\psi|^2$ vs ϕ]

3.) The ionization of which with UV light at 90 nm will produce electrons with the longest de Broglie wavelength?

A.) H (1s)
B.) H (2s)
C.) H (4s)
D.) He$^+$ (4s)
E.) He$^+$ (8s)

4.) Identify the atom or ion with the electronic configuration [Ne]3s3p6?

A.) Ar$^+$
B.) K$^+$
C.) Ar
D.) K
E.) Cl$^-$

5.) Which has the largest atomic or ionic radius?

A.) Ar$^+$
B.) K$^+$
C.) Ar
D.) K
E.) Cl$^-$
6.) Which is the most electronegative?

7.) Which is *not* paramagnetic in its ground state?
 A.) O B.) O\(^-\) **C.) O\(^{2-}\)** D.) O\(_2\) E.) O\(_2^-\)

8.) After diving, which ascent poses the gravest danger to a diver holding his or her breath?
 A.) 10m→0m B.) 20m→10m C.) 40m→20m
 D.) 60m→30m **E.) 100m→40m**

9.) The atoms or molecules of which ideal gas have the greatest average kinetic energy?
 A.) Ar at 200 °C **B.) He at 400 °C** C.) He at 100 °C
 D.) H\(_2\) at 200 °C E.) H\(_2\) at 100 °C
Part 2: Short Answer Problems (105 pts total)
Instructions: Enter answers in the boxes provided. Show your work and justify your answer.

(25 pts)
1.) Consider the H atom and He$^+$ ion.

a) What is the maximum wavelength of light that will ionize H(2s)?

\[E = \frac{hc}{\lambda} = -R_{\infty}(Z^2 / n^2) \]

\[\lambda = \frac{hc}{R_{\infty}Z^2} = 364 \text{ nm} \]

b) Light of what wavelength will induce the n=4 \rightarrow n=8 transition in He$^+$?

\[\Delta E = -R_{\infty}Z^2 \left(\frac{1/n_f^2}{1/n_i^2} \right) \]

\[\Delta E = \frac{hc}{\lambda} \]

\[\lambda = \frac{hc}{(-R_{\infty}Z^2)(1/n_f^2 + 1/n_i^2)} = 486 \text{ nm} \]

(30 pts)
2.) Consider an atom of the element aluminum (Al) in its ground state.

a) Write the electron configuration for an atom of Al.

Answer: $[\text{Ne}] 3s^2 3p^1$

b) Write down the values of the quantum numbers for an electron in the highest occupied orbital.

n: 3 l: 1 m$_l$: -1 or 0 or 1 m$_s$: -1/2 or 1/2

c) Sketch the highest occupied atomic orbital and indicate number and type of nodes.

2 nodes total:

1 angular node
1 radial node
(25 pts)
3.) Consider 4.4 g of a hydrocarbon (hc) gas with the empirical formula C₃H₈.

a) The hydrocarbon fills a balloon to 0.56 L at 4.4 atm and 300 K. What is the molecular formula of the hydrocarbon?

\[P V = n R T ; \quad n = \text{mass} / M \]
\[P V = (\text{mass} / M) R T \]
\[M = \text{mass} R T / P V = 44 \text{ g/mol} \]

b) Shown is a plot of the molecular speed distribution, F(v), and \(v_{\text{rms}} \) for CO₂ at 300 K. Sketch F(v) and indicate \(v_{\text{rms}} \) for the hydrocarbon gas at 300 K and 600 K.

![CO₂ at 300 K](image1)

![hc at 300 K](image2)

![hc at 600 K](image3)

(25 pts)
4.) Two sunscreen products (X and Y) have the following extinction coefficients, \(\varepsilon \), at 310 nm:
\(X = 3.0 \text{ cm}^2/\text{g} \) and \(Y = 1.0 \text{ cm}^2/\text{g} \). For the following questions, the absorbance should be calculated for a 1 cm sample path length.

a) What is the absorbance of a 0.1 g/mL sample of X?

\[A = \varepsilon l c = 0.3 \]

Answer: \(0.3 \)

b) A 0.10 g/mL sample of either X or Y is placed in the spectrometer. The measured ratio of the intensity of the transmitted light to the intensity of the incident light is 0.80 at 310 nm. Is the sample sunscreen X or Y?

\[A = \log (I_o / I_t) = \varepsilon l c \]
\[\varepsilon = [\log (I_o / I_t)] / l c = 1.0 \text{ cm}^2/\text{g} \]

Answer: Y