Chemistry 1A Fall 2000

Midterm Exam I, version C September 19, 2000

(Closed book, 75 minutes, 105 points)

Name:	Section Number:
SID:	T.A. Name:
	Identification Sticker

Exam information, extra directions, and useful hints to maximize your score:

- Write your name on all six pages.
- There are two parts to the exam: 1) multiple choice and 2) short answer problems.
- For the multiple choice problems, fill in the Scantron form AND circle the answer on your exam.
- Answer the questions you know how to do first, then work on the questions you skipped.
- Show all work on the short answer problems for which you want credit and do not forget to include units!
- You may use the back side of the exam pages to show your work and/or for scratch paper.

	Unit Prefixes	
milli, m (x 10 ⁻³)	micro, μ (x 10 ⁻⁶)	nano, n (x 10 ⁻⁹)
kilo, k (x 10^3)	mega, $M(x10^6)$	giga, G (x 10^9)

Some possibly useful information:

$$E_{\text{photon}} = hv = hc/\lambda$$

$$E_{\text{kin}} (e^{-}) = hv - \Phi = hv - hv_0 = mv^2/2$$

 $\lambda_{de Broglie} = h/p = h/mv$

Page	Points
2-4	/ 45
5	/ 30
6	/ 30
Total	/ 105

Part 1: Multiple Choice.

(3 pts each, 45 pts total)

Instructions: Bubble in the correct answer on your Scantron sheet AND circle the answer on your exam. Each question has one correct answer.

- The answer to question 1 is C. Bubble in C on your ScantronTM form. 1.)
- 2.) Which is required in the greatest quantity (mass) in order to produce 1 gram of Br₂?
 - A.) HBr
- B.) NaBr
- C.) KBr
- D.) MgBr₂ E.) CaBr₂
- Which has $\lambda_{de\ Broglie}$ equal to one half that of ^{16}O at the same speed? 3.)
 - A.) ^{32}S B.) ^{24}Mg C.) ^{12}C D.) ^{8}B E.) ^{4}He

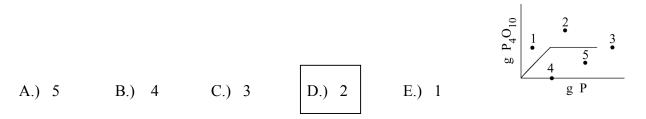
- 4.) Including the structure below, how many structural isomers of propanol exist?

$$\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{OH}$$

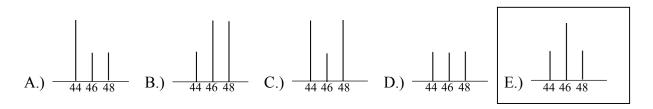
- A.) 4
- B.) 3 C.) 2 D.) 1 E.) 0

- 5.) Which of the following amino acids is <u>not</u> chiral? (note: the H atoms are not shown)

- **6.**) Which of the following molecules does *not* have an electric dipole moment?


$$C = C$$

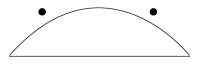
$$C.)$$
 H C


D.)
$$CI$$
 $C = C$ CI

$$Cl$$
 $C=C$
 Cl
 $E.)$
 Cl

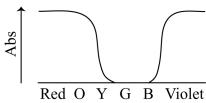
Shown is the graph depicting the quantity of P₄O₁₀ accumulated in the oxidation of P as a 7.) function of added P for a fixed amount of O₂. Through which point would the graph pass for a similar reaction with access to twice the amount of O_2 ?

A mixture of one-third ¹²C, one-third ¹⁶O, and one-third ¹⁸O reacts to form pure CO₂. Which is 8.) the correct mass spectrum of the CO_2 ?


9.) How many grams of CaCO₃ are formed from the reaction of 56 g of CaO and 56 g of CO₂?

- A.) 44
- B.) 56
- C.) 100
- D.) 112
- E.) 128

10.) Which of the following contains *no* ions that are isoelectronic with Ar?


- A.) NaBr
- B.) CaBr₂ C.) KCl
- D.) MgCl₂
- E.) NaCl

Shown is the standing wave electron wave function for n=1. For which n will the wave function 11.) pass through all three points?

- A.) 0
- B.) 1
- C.) 2
- D.) 3
- E.) 4

12.) The absorption spectrum of a given compound is shown below. What color does it appear under illumination with red light?

- A.) black
- B.) red
- C.) green
- D.) blue
- E.) white

13.) Consider the electrolysis of 10 g of liquid water into hydrogen and oxygen gas. Approximately what volume of gas will be formed?

- A.) $\sim 1 \text{ m}^3$ B.) $\sim 1 \text{ L}$ C.) $\sim 10 \text{ mL}$ D.) $\sim 10 \text{ L}$ E.) $\sim 1 \text{ kL}$

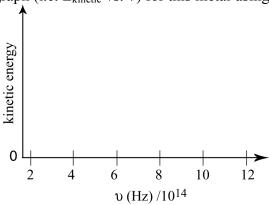
14.) Which of the following has a linear molecular structure?

- A.) SO₂
- B.) H_2S C.) IF_2^+
- D.) ICl₂
- E.) NH₂

15.) Ionization energy (IE) is the energy required to remove an electron from an atom. For which pair X + Y below will transfer of an electron from X to Y occur at the shortest distance to form ions X⁺ and Y-?

B.)
$$Na + Br$$
 C.) $K + Br$

D.)
$$Rb + Br$$


E.)
$$Cs + Br$$

Part 2: Short Answer Problems (60 pts total)

Instructions: Enter answers in the boxes provided. Show your work. Where requested write explanations in fifteen words or less.

(30 pts)

- The minimum amount of energy a photon needs to eject an electron from a metal M, occurs in the yellow at $\lambda = 600$ nm.
- a) Sketch the photoelectric graph (i.e. $E_{kinetic}$ vs. v) for this metal using the given axes.

b) What is the energy of an incident ultraviolet photon with $\lambda = 300$ nm?

$$E = hc/\lambda$$

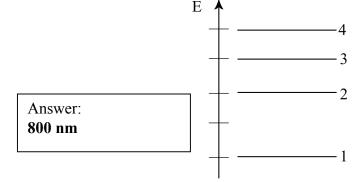
Answer: **6.626 x 10⁻¹⁹ J** #Sig Figs (1) is not important

c) What is the kinetic energy of an electron ejected from M by the photon in part b)?

$$E = hc/\lambda - hc/\lambda_0$$

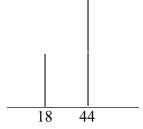
Answer: **3.313** x 10⁻¹⁹ J

d) Calculate the de Broglie wavelength for the electron ejected in part c).


$$\lambda = h/p = h/(2m_e E_{Kin})^{1/2}$$

Answer: **0.853 nm**

e) 600 nm light corresponds to transition $4 \rightarrow 1$ in the energy level diagram shown below. What λ corresponds to the $3 \rightarrow 1$ transition?


$$E_{3\rightarrow 1} = 3/4 E_{4\rightarrow 1}$$

$$\lambda_{3\rightarrow 1} = 4/3 \lambda_{4\rightarrow 1}$$

(30 pts)

- 1.) A compound containing only carbon and hydrogen is combusted with oxygen.
- a) Shown is a mass spectrum of the combustion products. Identify the products.

Product 1:	Product 2:
H_2O	CO_2
(M.W. = 18 g/mol)	(M.W. = 44 g/mol)

b) Based on the ratio of peak heights in the mass spectrum, determine the empirical formula of the unknown.

From mass spectrum molar ratio of product CO₂:H₂O is 2:1 Molar ratio of product C:H is 1:1 Molar ratio of reactant C:H is 1:1

Answer:	
CH	

c) The molecular mass of the unknown is 26 g/mol. What is its molecular formula?

Molar weight corresponding to empirical formula is 13g/mol Therefore, molecular formula must have twice as many moles of each atom.

Answer: C₂H₂

d) Draw the Lewis electron dot structure for the unknown.

Structure:

Explanation:

Н-С≡С-Н

e) Which is true for the H–C–C bond angle (θ) in the unknown? Circle the appropriate answer and explain.

 $\theta = 109.5^{\circ}$

 $\theta = 120^{\circ}$

θ = 180°

Steric Number: 2 means linear structure