Chemistry 112A, Midterm 2

Student name: \qquad Student signature: \qquad
Write TA's full name (section number) or Lecture Only: \qquad

1. Please make sure that the exam has 8 pages including this one.
2. Please write your answers in the spaces provided.
3. Write clearly; illegible or ambiguous answers will be considered incorrect.
4. Only writing implements are allowed (No Calculators).

GOOD LUCK!

1.	60 points
2.	25 points
3.	8 points
4.	34 points
5.	20 points
6.	8 points
7.	8 points
8.	12 points
Total	$\mathbf{1 7 5}$ points

MINI-PERIODIC TABLE

I	II	III	IV	V	VI	VII	VIII
H							He
Li	Be	B	C	N	O	F	Ne
$\mathbf{N a}$	Mg	Al	Si	P	S	Cl	Ar
K	Ca	Ga	Ge	As	Se	Br	Kr

1. Answer the following questions. Every wrong answer cancels a correct answer (60 points).
(a). Circle the compound(s) that are meso compounds (6 points).

(b). Number the starting materials that cyclize fastest to slowest via an $\mathrm{S}_{\mathrm{N}} 2$ reaction [1 = fastest] (6 points).

(c). Circle the alkene(s) listed below that upon reaction with HBr would give a racemic chiral product rather than an achiral product (6 points).

(d). Circle the alkyl halide(s) below that would undergo an $\mathbf{S}_{\mathbf{N}} \mathbf{1}$ reaction more rapidly than isopropyl chloride (6 points).

(e). Circle the correct statement(s) (6 points).
2. If a compound has a diastereomer it must be chiral.
3. Compounds that do not have any asymmetric carbons cannot be chiral.

If two stereoisomers are not enantiomers then they must be diastereomers.
All stereocenters are asymmetric carbons.
(5.) The reaction of a chiral compound with an achiral reagent can provide two product diastereomers in unequal amounts.
(f). Circle the correct statement(s) (6 points).

1.

Chloride anion is a faster $\mathrm{S}_{\mathrm{N}} 2$ nucleophile than iodide anion in aprotic solvents.
2. Chloride anion is a faster $\mathrm{S}_{\mathrm{N}} 2$ nucleophile than iodide anion in protic solvents.
(3.) $\mathrm{S}_{N} 1$ and E 1 reactions proceed via the same intermediate.
4. The rate of E1 reactions does not depend of solvent.
5. Primary alkyl halides cannot react by an E1 mechanism.
(g). Circle the compound(s) that contain (S) stereocenter(s) (6points).

(h). Number the alkyl halides that provide the fastest to slowest $\mathrm{S}_{\mathrm{N}} 2$ reaction [1 = fastest] (6 points).

1

(i). Circle the nucleophile(s) that would react with isopropyl iodide primarily by $\mathbf{S}_{\mathbf{N}} \mathbf{2}$ rather than elimination (6 points).

(j). Number the bicyclic $\mathrm{C}_{10} \mathrm{H}_{18}$ hydrocarbons according to their heats of formation, i.e., relative stability [1 = most stable] (6 points):

2. For each of the following reactions supply the missing starting materials, reagents, or major organic products in the space provided. Show the stereochemistry of the product. If the product is chiral indicate whether or not it is racemic (25 points total).
(a)

$\oplus \Theta$
NaO

(b)

(c)

(d)

(e)

(\pm)

3. The two alkyl bromides shown below undergo $S_{N} 1$ reactions at very different reaction rates.

a. Circle the alkyl bromide that undergoes the fastest $S_{N} 1$ reaction (2 points)
b. Briefly explain the rationale for your answer (6 points).

4. For each of the following pairs of structures assign the isomeric relationship, ie., diastereomeric, enantiomeric, or identical (includes conformational). In addition, circle all of the compounds that are chiral (34 points).
(a)

(b)

(d)

diastereomers
(e)

(f)

(h)
(i)

identird

5

5a. Draw all of the possible isomers of trichlorocyclobutane (Four-membered ring with three chlorine attached). List enantiomers, but points will be marked off for writing the same structure twice (16 points).
bb. Circle the chiral compounds (4 points).

6. Treatment of the compound below with base results almost exclusively in one alkene stereoisomer.

a. Circle the stereoisomer that is primarily formed (2 points).
b. Use Newman projections of the starting material to explain the reaction stereoselectivity (6 points).

7. Two dimethylcyclohexane constitutional isomers are shown below in their low energy conformations.

a. Circle the isomer for which the smallest amount of the chair flipped conformation is present at equilibrium (2 points).
b. Briefly explain your reasoning (6 points).

1. The circled isomer has only anti-methyl interactions with ring (- (bonds in its low energy information. (untavorabile)
2. The other isomer has a gave tie inter actionvivelween the two methyl group in the Love eriegy conformation. 3. The high energy conformations of both compounds have comparative
interactions and emerges.
3. Two substitution reactions are shown below.
I.

II.

a. Assign the (R) or (S) configuration to the stereocenters in each of the starting materials and products (2 points).
b. Provide a mechanism for each reaction (10 points). Hint: Pay attention to the product stereochemistry.

(inversion:
overall retention
