Chemistry 1A, Fall 2006

Midterm 2, Version A -KEY

Oct 17, 2006
(90 min , closed book)
Name: \qquad
SID: \qquad
TA Name: \qquad

- There are 26 Multiple choice questions worth 3.0 points each.
- There are 6 , multi-part short answer questions.
- For the multiple choice section, fill in the Scantron form AND circle your answer on the exam.
- Put your final answers in the boxes provided. Answers outside the boxes may not be considered in grading.
- The homework and chemquizzes that each question is based upon is listed after the question e.g. [HW 1.13, CQ 7.3]

Question	Page	Points	Score
Question 27	10	7	
Question 28	10	8	
Question 29	11	6	
Question 30	11	7	
Question 31	12	4	
Question 32	12	10	
Total		42	

Quantum:

$\mathrm{E}=\mathrm{h} v$
$\lambda v=c \mathrm{~A})$
$\lambda_{\text {deBroglie }}=\mathrm{h} / \mathrm{p}=\mathrm{h} / \mathrm{mv}$
$\mathrm{E}_{\text {kin }}(\mathrm{e}-)=\mathrm{h} v-\Phi=\mathrm{h} v-\mathrm{h} \nu_{0}$
$E_{n}=-\frac{Z^{2}}{n^{2}} R_{\infty}$
$\Delta \mathrm{x} \Delta \mathrm{p} \sim \mathrm{h}$
$\mathrm{p}=\mathrm{mv}$
Particle in a box (1-D Quantum):
$\mathrm{E}_{\mathrm{n}}=\mathrm{h}^{2} \mathrm{n}^{2} / 8 \mathrm{~mL}^{2} ; \mathrm{n}=1,2,3 \ldots$
Vibrational:
$E_{v}=(v+1 / 2) h A / 2 \pi ; A=(k / m)^{1 / 2}$
Rotational:
$\mathrm{E}_{\mathrm{n}}=\mathrm{n}(\mathrm{n}+1) \mathrm{hB} ; \mathrm{B}=\mathrm{h} / 8 \pi^{2} \mathrm{I} ; \mathrm{I}=2 \mathrm{mr}^{2}$
$\mathrm{m}=\mathrm{m}_{\mathrm{A}} \mathrm{m}_{\mathrm{B}} /\left(\mathrm{m}_{\mathrm{A}}+\mathrm{m}_{\mathrm{B}}\right)$
Ideal Gas:
$\mathrm{PV}=\mathrm{nRT}$
$E_{\text {kin }}=\frac{3}{2} R T$
$\mathrm{v}_{\text {rms }}=\sqrt{\frac{3 R T}{\mathrm{M}}}$

Constants:

$\mathrm{N}_{0}=6.02214 \times 10^{23} \mathrm{~mol}^{-1}$
$\mathrm{R}_{\infty}=2.179874 \times 10^{-18} \mathrm{~J}$
$\mathrm{R}_{\infty}=3.28984 \times 10^{15} \mathrm{~Hz}$
$\mathrm{k}=1.38066 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
$\mathrm{h}=6.62608 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
$\mathrm{m}_{\mathrm{e}}=9.101939 \times 10^{-31} \mathrm{~kg}$
$\mathrm{c}=2.99792 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
$\mathrm{T}(\mathrm{K})=\mathrm{T}(\mathrm{C})+273.15$
$\mathrm{F}=96,485 \mathrm{C} / \mathrm{mol}$
$1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C}$
Gas Constant:
$\mathrm{R}=8.31451 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{R}=8.20578 \times 10^{-2} \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$1 \mathrm{~nm}=10^{-9} \mathrm{~m}$
$1 \mathrm{~kJ}=1000 \mathrm{~J}$
$1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}=760$ torr ≈ 1 bar $1 \mathrm{~L} \mathrm{~atm} \approx 100 \mathrm{~J}$

Thermodynamics:

$\Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{S}^{\circ}$
$\Delta \mathrm{H}^{\circ}=\Sigma \Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ (products) $-\Sigma \Delta \mathrm{H}_{\mathrm{f}}{ }^{\text {(reactants) }}$
$\Delta \mathrm{S}^{\circ}=\Sigma \mathrm{S}^{\circ}$ (products) $-\Sigma \mathrm{S}^{\circ}$ (reactants)
$\Delta \mathrm{G}^{\circ}=\Sigma \Delta \mathrm{G}_{\mathrm{f}}^{\circ}$ (products) $-\Sigma \Delta \mathrm{G}_{\mathrm{f}}^{\circ}$ (reactants)
$\mathrm{S}=\mathrm{k}_{\mathrm{B}} \ln \mathrm{W}$
$\Delta \mathrm{S}=\mathrm{q}_{\mathrm{rev}} / \mathrm{T}$
$\Delta \mathrm{E}=\mathrm{q}+\mathrm{w}$
$w=-P_{\text {ext }} \Delta V$
for $\mathrm{aA}+\mathrm{bB} \rightleftarrows \mathrm{cC}+\mathrm{dD}$
$Q=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \quad$ At equilibrium, $\mathrm{Q}=\mathrm{K}$
$\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \ln \mathrm{Q}$
$\mathrm{G}=\mathrm{G}^{\circ}+\mathrm{RTln}(\mathrm{a}) ; \mathrm{a}=$ activity $=\gamma \mathrm{P} / \mathrm{P}^{\circ}$ or $\gamma[\mathrm{A}] /[\mathrm{A}]^{\circ}$
$\Delta \mathrm{G}^{\circ}=-\mathrm{R} \ln \mathrm{K}$
$\Delta \mathrm{G}^{\circ}=-\mathrm{nF} \Delta \epsilon^{\circ}$
$\Delta €=\Delta \epsilon^{\circ}-(\mathrm{RT} / \mathrm{nF}) \ln \mathrm{Q}$
$\ln K=-\frac{\Delta H^{\circ}}{R} \frac{1}{T}+\frac{\Delta S^{\circ}}{R}$
$\Delta \mathrm{T}=\mathrm{ik} \mathrm{k}_{\mathrm{b}, \mathrm{f}} \mathrm{m}$
$\Pi=$ iMRT
$\mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}=\mathrm{X}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}{ }^{\circ}+\mathrm{X}_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}{ }^{\circ}$

Acid Base:

$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\mathrm{pX}=-\log \mathrm{X}$
$p H=p K_{a}+\log \frac{\left[A^{-}\right]}{[H A]}$

Kinetics:

$[A]_{t}=[A]_{0} e^{-k t}$
$\ln [\mathrm{A}]_{\mathrm{t}}=\ln [\mathrm{A}]_{0}-\mathrm{kt}$
$t_{1 / 2}=\ln 2 / k$
$1 /[\mathrm{A}]_{\mathrm{t}}=1 /[\mathrm{A}]_{0}+\mathrm{kt}$
$\mathrm{k}=\mathrm{A} \mathrm{e}^{(-\mathrm{Ea} / \mathrm{RT})}$
$\ln \left(\mathrm{k}_{1} / \mathrm{k}_{2}\right)=\mathrm{E}_{\mathrm{a}} / \mathrm{R}\left(1 / \mathrm{T}_{2}-1 / \mathrm{T}_{1}\right)$
$\mathrm{t}_{1 / 2}=1 /[\mathrm{A}]_{0} \mathrm{k}$
$\mathrm{t}_{1 / 2}=[\mathrm{A}]_{0} / \mathrm{kt}$

Section 1: Periodic Properties

1.) Which is the proper ordering of the following elements from smallest atomic radius to largest? [HW 1.82 CQ 11.2]
A) $\mathrm{Na}, \mathrm{Mg}, \mathrm{Si}, \mathrm{S}, \mathrm{Ar}$
B) $\mathrm{Ar}, \mathrm{Na}, \mathrm{Si}, \mathrm{S}, \mathrm{Mg}$
C) $\mathrm{Ar}, \mathrm{S}, \mathrm{Si}, \mathrm{Mg}, \mathrm{N}$
D) $\mathrm{Mg}, \mathrm{Na}, \mathrm{Si}, \mathrm{Ar}, \mathrm{S}$
E) Si, S
2.) Which species has the highest ionization energy? [HW 1.77 CQ 11.3]
A) K
B) Ti
C) Cu
D) Ge
(E) Br
3.) Which pair would form an ionic bond? [HW 2.63 CQ 11.4]
A) C and H
B) N and H
C) Na and Cl
D) O and Cl
E) C and Cl
4.) Which pair would form a bond that has a dipole moment? [HW 2.63]
A) C and H
B) N and H
B) N and H
C) C and Cl
E) all of these

Section 2: Molecular Structure

For questions 5-7 assume the molecular orbital energy diagram shown can be used for all molecules mentioned.

$$
\begin{aligned}
& -\sigma_{2 \mathrm{p}}^{*} \\
& -\pi_{2 \mathrm{p}}^{*} \\
& -\sigma_{2 \mathrm{p}} \pi_{2 \mathrm{p}} \\
& -\sigma_{2 \mathrm{~s}}^{*} \\
& -\sigma_{2 \mathrm{~s}}
\end{aligned}
$$

5.) How many unpaired electrons are in $\mathrm{O}_{2}{ }^{+2}$? [HW 3.47, CQ 15.2]
A) 0
B) 1
C) 2
D) 3
E) 4
6.) What is the bond order of NO? [HW 3.49, CQ 15.3]
A) 0.5
B) 1
C) 1.5
D) 2
7.) Which of the following is not paramagnetic? [HW 3.47, CQ $15.2,15.4$]
A) O_{2}^{-1}
B) OF
C) NO
D) OF
E) CO^{+}

For questions 8 and 9 refer to the two functions plotted in the diagram below.

II

8.) What is the result of adding function I and function II shown in the diagram and

9.) The process of calculating the new function $(\mathrm{I}+\mathrm{II})^{2}$ is most analogous to the formation of which hybrid atomic orbital?
A) π^{*}
B) sp^{3}
C) sp^{2}
D) σ^{*}
E) sp
10.) What do the ' + ' and ' - ' signs designate in the following picture of a carbon hybrid atomic orbital?

A) Charge of the electrons
B) Charge in the region of space.
C) The electric field in the region of space
D) The mathematical sign of the wavefunction
E) The sign of the probability function.

Use the diagrams below for 1,3,5-hexatriene to answer questions 11-17. The left side of the diagram shows the Lewis structure for the molecule. The right side shows the orbita energy level diagram for the $\mathrm{C}-\mathrm{H}$ bonding at carbon C_{2} in the molecule. On the right, the orbital energy levels are labeled I-V.

Orbital diagrams for $\mathrm{C}_{2}-\mathrm{H}$ bond

11.) What is the hybridization of the carbon labeled C_{2} in $1,3,5$ hexatriene? [HW 3.33 3.38, CQ16.1]
A) sp
B) sp^{2}
C) sp^{3}
E) cannot be determined
12.) What is the C-C-H bond angle on the carbon C_{3} in $1,3,5$ hexatriene? [HW 3.9 CQ16.3]
A) 60
B) 90
C) 109
D) 120
E) 180
13.) What is the best label for the orbitals at energy level I on the right side of the diagram? [HW 3.49, CQ 15.2, 16.4]
A) s
B) p
C) sp
D) sp^{2}
E) σ
14.) What is the best label for the orbitals at energy level IV on the right side of the diagram? [HW 3.49 CQ15.2]
A) s
B) σ^{*}
C) π
D) σ
E) π^{*}
15.) How many p atomic orbitals can be used to form π molecular orbitals in $1,3,5$ hexatriene? [HW 3.85, CQ 17.2]
A) 4
B) $\quad 6$
C) 8
D) 10
E)

How many π molecular orbitals are formed in 1,3,5 hexatriene? [HW 3.85, CQ17.3]
A)
B) 6
C) 8
D) 10
E) 12
17.) Rank the following five possible π MOs in $1,3,5$ hexatriene from highest to lowest energy. [HW 3.85, CQ17.3]

A) A, B, C, D, E
B) $\mathrm{C}, \mathrm{A} \sim \mathrm{D}, \mathrm{E}, \mathrm{B}$
C) D, E, A, B, C
D) $\mathrm{C}, \mathrm{A}, \mathrm{D} \sim \mathrm{E}, \mathrm{B}$
E) D, A~B, E, C

SECTION 3: PROPERTIES OF IDEAL GASES

For questions $18-22$, choose the plot below that best demonstrates the relationship between the variables described (assume variables not listed are constant).

A

B

D

E
18.) Pressure vs. volume for an ideal gas. [HW 4.9, 4.10]
A) A B) B
C) C
D) D
E) E
19.) Volume vs. temperature for an ideal gas. [HW 4.9, 4.10]
A) A
B) B
C) C
D) D
E) E
20.) Particle count (at each velocity) vs. the velocity of a gas. [HW 4.72]
A) A
B) B
C) C
D) D
21.) $\mathrm{PV} / \mathrm{RT}$ vs. P for a fixed amount of ideal gas.
A) A
B) B
C) C
D) D
E) E
22.) Kinetic energy of a mole of ideal gas vs. temperature. [HW 4.65]
A) A
B) B
C) C
D) D
E) E

For questions $23-26$, consider the following system at 273 K and assume that the volume of the tubes connecting the flasks is negligible in any calculation. The smaller flasks have volume 11 L and the larger 22 L . Initially, the gas in each flask is separated from the others by closed valves between each flask.

23.) What is the pressure (atm) in flask C [HW 4.13]?
A) 0.5
B) 1.0
C) 2.0
D) 3.0
E) 3.5
24.) If the valve between flask C and D is opened, what is the partial pressure (atm) of Ne in the combined volume of the two flasks? [HW 4.53, CQ MT2.7]
A) 0.17
B) 1.0
C) 1.3
D) 1.7
E) 2.6
25.) Which molecules have the highest rms velocity? [HW 4.67 4.69]
A) He
B) Xe
C) Ne
D) Ar
E) all are the same
26.) Which molecules have the highest average kinetic energy? [CQ 19.1]
A) He
B) Xe
C) Ne
D) Ar
E) all are the same

SECTION 4: SHORT ANSWER

27.) For the following molecules, draw the best Lewis structure showing all bonds and lone pairs of electrons (include resonance if needed). [HW 2.33, 2.36, CQ12.2, 12.3]

$\mathrm{N}_{3}{ }^{-}$	COCl_{2} (C is the central atom)
$\left[\begin{array}{ccc}\Theta & \oplus & \Theta \\ \cdots & \\ N & \cdots \\ \cdots & & \\ & & \end{array}\right]^{1-}$	

28.) Complete the following table based on the Lewis structures. [HW 3.1, 3.7, 3.17, 3.33, CQ12.2, 12.3, 14.1-4]

	$\stackrel{0}{0}=\mathrm{S}-\underset{0}{0}:$	
Polar? (yes/no)	yes	yes
Electronic Structure about the central atom	trigonal planar	octahedral
Molecular Structure	bent or angular	square pyramidal
Hybridization of the central atom	sp^{2}	sp ${ }^{3} \mathrm{~d}^{2}$

29.) Three resonance structures of carbonyl sulfide are shown. Fill in the boxes fo formal charge on each atom and explain which is the best structure in 20 words or less. [HW 2.43 2.45 CQ 13.1, 13.3]

$$
: \ddot{\mathrm{O}}-\mathrm{C} \equiv \mathrm{~S}: \quad: \underset{\mathrm{O}}{\mathrm{O}}=\mathrm{C}=\ddot{\mathrm{S}}: \quad: \mathrm{O} \equiv \mathrm{C}-\ddot{\mathrm{S}}:
$$
 $$
\begin{array}{lll|l|l|l|l|} \text { Formal Charge } & -1 & 0 & \boxed{+1} & \begin{array}{|l|l|l|} \hline 0 & 0 & 0 \\ \hline \end{array} & \begin{array}{l} 0 \end{array} \\ \hline \end{array}
$$
 $$
\begin{array}{lll} +1 & -1 \\ \hline \end{array}
$$

Explanation

$O=C=S$ is the best structure because formal charge is minimized
30.) Data show that the boiling points of NH_{3} and PH_{3} are the reverse of what would be expected based on their molar masses. Explain the relationship between the boiling points by completing the following: [HW 5.12, CQ 20.2]

What is the strongest intermolecular force in NH_{3} liquid?

hydrogen bonding

What is the strongest intermolecular force in PH_{3} liquid?
dipole-dipole

Circle the compound with the higher boiling point:
Explain your reasoning in 20 words or less

Explanation

NH_{3} has stronger intermolecular forces than PH_{3}. This will make NH_{3} harder to boil.
31.) Two solutions, one red, the other blue are examined with a UV-Vis spectrophotometer. [Laboratory]
Circle the solution with the higher extinction coefficient at 650 nm : Red Explain your reasoning in 20 words or less.

Explanation:

The blue solution absorbs red light. 650nm is red light, so $\mathcal{\epsilon}$ is high at 650 nm for the blue solution
32.) Assign the ionization energies $495 \mathrm{~kJ} / \mathrm{mol}$ and $4560 \mathrm{~kJ} / \mathrm{mol}$ to Na or Na^{+}in the table below and write the corresponding chemical reaction: [Discussion, CQ MT2.1]

Species	Reaction	Ionization Energy
Na	$\mathrm{Na}(\mathrm{g}) \rightarrow \mathrm{Na}^{+}(\mathrm{g})+1 \mathrm{e}-$	$495 \mathrm{~kJ} / \mathrm{mol}$
Na^{+}	$\mathrm{Na}^{+}(\mathrm{g}) \rightarrow \mathrm{Na}^{2+}(\mathrm{g})+1 \mathrm{e}-$	$4560 \mathrm{~kJ} / \mathrm{mol}$

Write the electronic configurations for the three species below: [HW 2.11]

Na	$1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{1}$
Na^{+}	$1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}$
Na^{2+}	$1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{5}$

Explain the large difference in ionization energies between Na and Na^{+}in terms of the electronic configurations in 20 words or less.

Explanation:
 The first IE removes a valence electron. The second IE removes a core electron, which takes a lot more energy.

