Part 1: Multiple Choice.

(4 pts each, 44 pts total)
Instructions: Bubble in the correct answer on your Scantron ${ }^{\text {TM }}$ form AND circle the answer on your exam. Each question has one correct answer.
1.) The answer to question 1 is \mathbf{A}. Bubble in \mathbf{A} on your S cantron ${ }^{\mathbf{T M}}$ form.
2.) Consider the sublimation of dry ice:

$$
\mathrm{CO}_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})
$$

If K_{1} is the equilibrium constant at 300 K , and K_{2} is the equilibrium constant at 400 K , which of the following inequalities must be true?
A.) $\mathrm{K}_{1}=\mathrm{K}_{2}$
B.) $K_{1}=K_{2}^{-1}$
C.) $K_{1} K_{2}=0$
D.) $K_{1}>K_{2}$
E.) $\mathrm{K}_{1}<\mathrm{K}_{2}$
3.) For the vaporization of methanol

$$
\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g}),
$$

$\Delta \mathrm{H}^{\circ}=38.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta \mathrm{S}^{\circ}=112.9 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$. What is the boiling point of methanol at sea level? Assume $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{S}^{\circ}$ are independent of T .
A.) 64 K
B.) 237 K
C.) 273 K
D.) 337 K
E.) 373 K
4.) Consider the reaction:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

at equilibrium. What would be the reaction quotient immediately following the reduction of volume by two at constant temperature before any reaction occurs?
A.) $\mathrm{Q}=\frac{1}{4} \mathrm{~K}$
B.) $\mathrm{Q}=\frac{1}{2} \mathrm{~K}$
C.) $Q=K$
D.) $Q=2 K$
E.) $Q=4 K$
5.) One mole of an ideal gas expands isothermally against a constant pressure of 1 atmosphere. Which of the following inequalities is true?
A.) $\Delta \mathrm{P}>0$
B.) $q>0$
C.) $\Delta \mathrm{S}<0$
D.) $\Delta \mathrm{V}<0$
E.) $\Delta T<0$
\qquad
6.) One mole of an ideal gas expands adiabatically against a constant pressure of 1 atmosphere. Which of the following inequalities is true?
A.) $\Delta \mathrm{P}>0$
B.) $q>0$
C.) $\Delta \mathrm{S}<0$
D.) $\Delta \mathrm{V}<0$
E.) $\Delta \mathrm{T}<0$
7.) At what temperature does $\mathrm{K}=1, \Delta \mathrm{G}^{\circ}=0$ for the reaction $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$?
A.) $-273{ }^{\circ} \mathrm{C}$
B.) $0{ }^{\circ} \mathrm{C}$
C.) $100^{\circ} \mathrm{C}$
D.) $273{ }^{\circ} \mathrm{C}$
E.) $373{ }^{\circ} \mathrm{C}$
8.) How many different ways can you distribute six distinguishable stones between two boxes with five in the first box and one in the second box?
A.) 1
B.) 3
C.) 6
D.) 9
E.) 15
9.) The caloric content of 10 little cookies can heat up 10 kg of water by $10^{\circ} \mathrm{C}$. What would be the change in temperature if 1 little cookie was used to heat up 1 kg of water?
A.) $0.1^{\circ} \mathrm{C}$
B.) $1.0^{\circ} \mathrm{C}$
C.) $10{ }^{\circ} \mathrm{C}$
D.) $100{ }^{\circ} \mathrm{C}$
E.) $1000{ }^{\circ} \mathrm{C}$

For each of the problems $\mathbf{1 0 - 1 2}$, select the graph that best describes the behavior listed.
A.)

B.)

C.)

D.) $\xrightarrow{\sim}$
E.)

10.) $\mathrm{P}_{\mathrm{N}_{2} \mathrm{O}_{4}}$ as a function of $\left(\mathrm{P}_{\mathrm{NO}_{2}}\right)^{2}$ for $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$, at constant T .
11.) $\ln (\mathrm{K})$ as a function of $\frac{1}{\mathrm{~T}}$ for a the combustion of liquid methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$.
12.) $\Delta \mathrm{G}^{\circ}$ as a function of T for the vaporization of water, $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$.
\qquad

Part 2: Short Answer Problems (101 pts total)

Instructions: Enter answers in the boxes provided. Show your work. Explain your answer when requested in 15 words or less.

(30 pts)

1.) The reaction

$$
\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

is endothermic with $\Delta \mathrm{H}=4.6 \mathrm{~kJ} / \mathrm{mol} . \mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$ and $\mathrm{SO}_{2}(\mathrm{~g})$ are placed in a bulb at a fixed temperature with partial pressures of 3.0 atm each.
a) Write the expression for reaction quotient (Q) and calculate its value before any reaction occurs.

Answers:
b) After equilibrium is reached in the bulb at the same fixed temperature, the partial pressure of $\mathrm{Cl}_{2}\left(\mathrm{P}_{\mathrm{Cl}_{2}}\right)$ is found to be 1.0 atm . What are the partial pressures of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ and $\mathrm{SO}_{2}\left(\mathrm{P}_{\mathrm{SO}_{2} \mathrm{Cl}_{2}}\right.$ and $\left.\mathrm{P}_{\mathrm{SO}_{2}}\right)$?

Answers:
c) Calculate the value of the equilibrium constant for the reaction in part b).

Answer:
d) If some Cl_{2} is added to the equilibrium mixture, will the pressure of SO_{2} increase, decrease, or stay constant as the system approaches the new equilibrium state? Circle the answer and explain.

\qquad

(18 pts)

2.) Consider the reaction of silver chloride (AgCl) dissolving in water.

$$
\mathrm{AgCl}(\mathrm{~s}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

a) Dissolving 14.3 g of $\mathrm{AgCl}(\mathrm{s})$ consumes 6.5 kJ of heat. What is the temperature change if 14.3 g of $\mathrm{AgCl}(\mathrm{s})$ totally dissolves in 1.00 L of water initially at $20^{\circ} \mathrm{C}$?

Answer:
b) In actuality the equilibrium constant (K) for this reaction is very small $\left(1.6 \times 10^{-10}\right.$ at $\left.25.0^{\circ} \mathrm{C}\right)$. How will this affect the temperature change predicted in part (a)? Explain.

Answer:
(23 pts)
3.) A study of the geology of the earth shows that rocks older than 2 billion years contain iron in the form of FeS_{2}. In rocks less than 2 billion years old, iron appears mostly as the oxide $\mathrm{Fe}_{2} \mathrm{O}_{3}$ (hematite).

$$
4 \mathrm{FeS}_{2}(\mathrm{~s})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+15 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+8 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l})
$$

a) Calculate $\Delta \mathrm{H}^{\circ}$ for the above reaction.

Answer:

Answer:

Answer:
\qquad

(23 pts)

4.) Consider the hydrogenation of formaldehyde $\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{O}\right)$ to form methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$.

$$
\mathrm{CH}_{2} \mathrm{O}+\mathrm{H}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{OH}
$$

Average Bond Energy $(\mathrm{kJ} / \mathrm{mol})$			
$\mathrm{H}-\mathrm{H}$	436	$\mathrm{C}-\mathrm{O}$	360
$\mathrm{H}-\mathrm{C}$	413	$\mathrm{C}=\mathrm{O}$	743
$\mathrm{H}-\mathrm{O}$	463	$\mathrm{C}-\mathrm{C}$	348
$\mathrm{O}-\mathrm{O}$	146	$\mathrm{C}=\mathrm{C}$	612
$\mathrm{O}=\mathrm{O}$	497	C C	838

a) Estimate $\Delta \mathrm{H}^{\circ}$ for this reaction.

Answer:
b) The formation of which species, formaldehyde or methanol, is more exothermic (i.e. has the lower $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$)?

Answer:
c) The combustion of which species, formaldehyde or methanol, produces more heat per mole?
\square

