Chemistry 1A, Fall 2003

Midterm 1 Sept 16, 2003 (90 min, closed book)

Name:				

SID:_____

TA Name:_____

- This exam has 38 multiple choice questions.
- Fill in the Scantron form AND circle your answer on the exam.
- Each question is worth 4 points.

Note:

- The questions on this exam do not depend on each other. They may be answered in any order.
- All the questions are equally weighted. Answer those you can quickly and go back to those that require more thought.
- Some questions may seem obvious or too simple. They are. There are no 'trick' questions.
- Questions that contain 'mark all that apply' may require you to mark more than one answer to get credit for that question.

• Potentially useful relations:

$$E = hv$$

$$\lambda v = c$$

$$\lambda_{deBroglie} = h / p = h / mv$$

$$p = mv$$

$$E_{kin} = \frac{1}{2} mv^{2}$$

$$E_{kin} (e) = hv - \Phi = hv - hv_{0}$$

$$E_{n} = -\frac{Z^{2}}{n^{2}} R_{\infty}$$

$$PV = nRT$$

$$E_{kin} = \frac{3}{2} RT$$

$$v_{rms} = \sqrt{\frac{3RT}{M}}$$

 $\Delta E = q + w$ w = - P_{ext} \Delta V $\Delta E = \frac{3}{2} nR \Delta T$

$$N_{0} = 6.02214 \times 10^{23} \text{ mol}^{-1}$$

$$R_{\infty} = 2.179874 \times 10^{-18} \text{ J}$$

$$R_{\infty} = 3.28984 \times 10^{15} \text{ Hz}$$

$$k = 1.38066 \times 10^{-23} \text{ J K}^{-1}$$

$$h = 6.62608 \times 10^{-34} \text{ J s}$$

$$m_{e} = 9.101939 \times 10^{-31} \text{ kg}$$

$$c = 2.99792 \times 10^{8} \text{ m s}^{-1}$$
Gas Constant:

$$R = 8.31451 \text{ J K}^{-1} \text{ mol}^{-1}$$

$$R = 8.20578 \times 10^{-2} \text{ L atm K}^{-1} \text{ mol}^{-1}$$

$$T (K) = T (C) + 273.15$$

$$F = 96,485 \text{ C / mol}$$

$$1 \text{ V} = 1 \text{ J / C } 1 \text{ nm} = 10^{-9} \text{ m}$$

$$1 \text{ kJ} = 1000 \text{ J}$$

$$\begin{split} \Delta G^\circ &= \Delta H^\circ \text{ - } T\Delta S^\circ \\ \Delta H^\circ &= \Sigma \ \Delta H^\circ{}_{\rm f} \ (\text{products}) \text{ - } \Sigma \ \Delta H^\circ{}_{\rm f} \ (\text{reactants}) \\ \Delta S^\circ &= \Sigma \ S^\circ \ (\text{products}) \text{ - } \Sigma \ S^\circ \ (\text{reactants}) \\ \Delta G^\circ &= \Sigma \ \Delta G^\circ{}_{\rm f} \ (\text{products}) \text{ - } \Sigma \ \Delta G^\circ{}_{\rm f} \ (\text{reactants}) \\ S &= k_B ln W \end{split}$$

for aA + bB
$$\rightleftharpoons$$
 cC + dD

$$Q = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$
 At equilibrium, Q = K

$$\Delta G^{\circ} = -RT \ln K$$

$$\ln K = -\frac{\Delta H^{\circ}}{R} \frac{1}{T} + \frac{\Delta S^{\circ}}{R}$$

$$\Delta G^{\circ} = -nF\Delta C^{\circ}$$

$$pX = -\log X$$

$$pH = pK_a + \log\frac{[A]}{[HA]}$$

Color and Wavelength of Light

Wavelength (nm)					
800	600	400	200		
I	II		1		

Visible

IR

 ΔG° of Formation

compound	$\Delta G^{\circ} (kJ / mol)$
CO ₂	-394.36
$H_2O(g)$	-228.57
$C_6H_{12}O_6$	-910
O ₂	0

UV

SECTION 1: STOICHIOMETRY

1.) What is the coefficient of oxygen in the balanced combustion reaction of one (1) mole of acetone (C_3H_6O) ?

$$\mathrm{C_3H_6O}~+~\mathrm{O_2} \rightarrow \mathrm{CO_2} +~\mathrm{H_2O}$$

For the next four questions consider a gaseous hydrocarbon X which contains only carbon and hydrogen. It has a relative molar mass 2.25 times greater than molecular oxygen. The balanced combustion reaction of one mole of hydrocarbon X is:

$$1 \text{ X} + 8 \text{ O}_2 \rightarrow 5 \text{ CO}_2 + 6 \text{ H}_2\text{O}$$

2.) What is the molecular formula for hydrocarbon X?

A)
$$CH_4$$
 B) C_2H_6 C) C_3H_8 D) C_4H_{10} E) C_5H_{12}

3.) What is the minimum mass (grams) of hydrocarbon X required to completely react with 4.0 g oxygen as shown (this *can* be determined without the previous result)?

- 4.) Which is true when 2.0 moles of hydrocarbon X react with 14.0 moles of oxygen?
 - A) All the oxygen is consumed.
 - B) All the hydrocarbon is consumed.
 - C) No reagents remain.
 - D) An equal mass of each reagent remains.
 - E) None of these.
- 5.) Which is the mass spectrum for the products of the combustion of hydrocarbon X?

6.) What is the mass (in grams) of 4 L of gasoline if the density of gasoline is 0.79 g/ml?

7.) A 54 g sample of aluminum reacts completely with 48.0 g of oxygen gas. Which is the formula of the oxide?

A)
$$Al_2O_3$$
 B) AlO C) AlO_2 D) Al_6O_5 E) Al_3O_5

SECTION 2: ATOMIC STRUCTURE

8.) What is the molar mass (g/mol) of a sample of aluminum where all the atoms have 15 neutrons?

For the next three questions consider a 10 L sample of gaseous chlorine atoms in their natural relative abundances (3:1 ³⁵Cl : ³⁷Cl). The Cl atoms react to form Cl₂ gas.

11.) Which is the most likely mass spectrum of the products?

12.) What volume (in L) does the gas occupy after the reaction of the Cl atoms to form Cl₂?

13.) Which is the mass spectrum if the Cl_2 is split back into atoms?

Continue with the next question:

SECTION 3: PROPERTIES OF LIGHT

Points 1 and 2 represent the work functions in frequency units of two different metals. The plot is of photo-electron kinetic energy vs. photon frequency for a photoelectric effect experiment. Use the photon frequencies labeled A, B, C and D to answer the following questions.

21.) Which is the best desctiption of the color of an object with the following absoprtion spectrum?

- 22.) Under which conditions is constructive interference observed at a point on the target screen in a two slit experiment with waves?
 - A) When waves from each slit arrive in-phase.
 - B) When waves from each slit arrive 90° out of phase.
 - C) When waves from each slit do not arrive at the point.
 - D) When waves from each slit arrive at different times.
 - E) Constructive interference is never observed.

SECTION 4: QUANTUM MECHANICS

Consider the electronic energy levels of the Li^{2+} ion for the following five questions.

23.) What is the ground state energy in units of R_{∞} (Rydbergs)?

- 24.) What is the first excited state energy?
 - A) -9 B) -2.25 C) 0 D) 5 E) 9
- 25.) What wavelength photon is required to excite this ion from its ground state to first excited state (nm)?
 - A) 1.00 B) 3.14 C) 13.5 D) 18.8 E) 20.4

	A)	The electr	on and nucleur	s infinitely se	eparated.		
	B)	The groun	id state.				
	C) The nucleus.						
	D)	n=0.					
	E)	None of the	nese.				
27	7.) WI	nat is the ior	nization energy	of the ion in	n units of R_{∞} ?		
	1	A) -9	B) -2.25	C) 0	D) 4	E) 9	
			Conti	nue with the	next question:		
28	28.) How many unique spectral emission lines are observed from a system with four equally spaced energy levels?						

A) 1	B) 2	C) 3	D) 4	E) 5
· ·	· ·	· ·	<i>'</i>	

29.) Which excited state molecule or ion will have the smallest ionization energy?

A) $H(2p^{1})$ B) $He(1s^{1}3p^{1})$ C) $Li(1s^{2}4p^{1})$ D) $Be(1s^{2}2s^{1}5p^{1})$ E) $B(1s^{2}2s^{2}6p^{1})$

30.) Which is a possible electronic configuration for neutral silicon?

Δ)	$[Ne]3s^23n^1$
B)	$[Ne]3s^23p^2$
-C)	[Ne]3s ⁻ 3p ⁻
D)	$[Ne]3s^{1}3p^{6}$
E)	$[Ne]3s^23p^4$

For the next three questions, consider particles with the following masses (in kg) traveling at equal speeds:

A) 9.1e-31 B) 1.7e-27 C) 6.6e-28 D) 4.5e-19

31.) Which has the greatest momentum?

34.) Which atomic orbital has the greatest number of radial nodes?

35.) Which wave form for a particle trapped in a 1-dimensional box has the highest energy?

For the next three questions, consider the following set of five orbitals