Professor R. Gronsky

Fall Semester, 2005

Engineering 45 Midterm 01

SOLUTIONS

INSTRUCTIONS

Do not open until "START" is announced.

1. Mechanical Properties (20 points)

Mark \boxtimes the ballot box corresponding to the best answer. Two (+2) points for correct answers, -1 if wrong, 0 if blank.

(a) The compressive stress induced in the volume element shown below is defined by which expression?

(**b**) The shear stress induced in the volume element shown below is defined by which expression?

- $\boxtimes \sigma = P / (l \times w)$
- $\Box \ \sigma = P / (l \times t)$

(c) In order to convert the data from a load vs elongation plot to a stress vs strain plot, the following information is essential.

- \Box the cross-sectional area of the sample
- \Box the yield strength of the sample
- \boxtimes the geometry of the sample

(d) Elastic deformation is

- \Box linear
- \boxtimes recoverable
- \Box time-dependent

(e) The gage length of a metallic alloy sample used in the standard uniaxial tensile test

- \boxtimes has the smallest cross-sectional area
- \Box establishes the initial length of the sample
- $\hfill\square$ calibrates the sample's elongation to failure

- (f) "True" stress differs from "engineering" stress
- \Box in the way tensile test data is collected
- \boxtimes in the way tensile test data is reported
- \Box in the way tensile test data represents the actual sample

(g) The following data from a uniaxial tensile test of a low carbon steel sample indicates that

- \boxtimes it has a lower yield point of 450 MPa
- \Box it has an 0.2% offset yield point of 450 MPA
- \Box it fractured at precisely 0.02% offset

(h) For the same steel sample as above, an observer in the room would have observed necking in the sample \Box into the form the sample for the form that 400 MD

- \Box just before the sample fractured at 400 MPa
- \Box just when the sample yielded at 500 MPa
- \boxtimes just as the stress exceeded 600 MPa

(i) An aluminum alloy produced the following stress-strain plot during a uniaxial tensile test. Its yield strength is

- □ 400 MPa □ 450 MPa
- \square 430 MPa
- ⊠ 500 MPa
- (j) Comparing the above plots from a steel sample and an
- Al alloy sample, it can be concluded that
- ☑ the Al alloy has greater elastic recovery after fracture
- \Box the Al alloy has a larger elastic modulus
- \Box the Al alloy deforms more before it fails

2. Bonding (20 points)

Mark \boxtimes the ballot box corresponding to the best answer. Two (+2) points for correct answers, -1 if wrong, 0 if blank.

- (a) "Primary" bonds are formed
- \Box by the transfer of primary electrons
- \boxtimes primarily between individual atoms or ions
- \Box during primary chemical reactions
- (b) "Secondary" bonds are so-named because
- □ they require secondary electrons to complete the charge transfer necessary for bonding
- ☑ they occur between groups of atoms after primary bonding has occurred
- □ they result in secondary reactions with reduced efficiency relative to primary bonds

(c) Consider the following bonding energy curves for two alloys, A and B.

- \Box A has a higher tensile strength than B
- \boxtimes A has a lower elastic modulus than B
- \Box A has a smaller lattice constant than B
- (d) The "octet rule" predicts that Group IV elements
- $\boxtimes~$ form bonds with four near neighbors
- \Box have eight bonding electrons
- \Box reside in octahedral sites

(e) When compared with materials that form ionic bonds, metallic alloys

- \Box melt at higher temperatures
- \Box exhibit greater bond directionality
- \boxtimes have higher coordination numbers

- (f) During the formation of covalent bonds, a bonding
- model called "hybridization" explains why
- \square some bonds show both covalent and metallic character
- \Box carbon has more than one isotope
- \boxtimes silicon atoms are tetrahedrally coordinated

 (\mathbf{g}) The metallic bonding model explains ductility on the basis of

- $\hfill\square$ lack of bonding electrons, yielding weaker bonds
- \Box excess of mobile electrons, causing fluid bonds
- \boxtimes lack of bond directionality

(h) The basis for the van der Waals interaction that causes molecular bonding is

- \Box mutual charge symmetry
- \boxtimes induced electric dipoles
- \Box distortion in electron orbitals

(i) One explanation for why graphite powder acts so well

- as a "solid lubricant" is \boxtimes carbon atoms in graphite are covalently bonded within
- planar layers but have weaker secondary bonds between layers
- □ finely-powdered carbon has many unsatisfied bonds at the particle surfaces, which act as a "sea of electrons" to cause lubrication
- □ when crushed into a fine powder, graphite establishes a "polar" distribution of charge, leading to Coulombic repulsion between powder particles
- (j) The following schematic shows two water molecules in a "bonded" configuration due to

- \Box 109.5° covalent bond angles
- \boxtimes a functional hydrogen bridge
- \Box the ideal radius ratio, 0 < r/R < 0.155

3. Lattice Planes (20 points) The triangles drawn here are sections of planes through cubic and hexagonal lattices. Identify the relevant planes by their Miller indices or Miller-Bravais indices. Four (4) points for *correct answers in the boxes* provided.

4. Lattice Directions (20 points) Identify the following directions through both cubic and hexagonal lattices using the appropriate Miller index or Miller-Bravais index notation.

Four (4) points for *correct answers in the boxes* provided.

5. Crystal Structure (20 points)

An alloy of nickel and tin adopts a number of different structures, one of which is cubic, designated by the *Strukturbericht* symbol DO_3 , where the first index D is reserved for the more "complicated" crystal structures. In this case, the larger Sn atoms are located at all face-centered-cubic lattice sites, and the smaller Ni atoms are found in all of the tetrahedral interstices and all of the octahedral interstices. A perspective sketch of the positions is shown below on the left.

(a) On the grid provided to the right, draw a cube-axis projection of the structure, and label the "elevation" of each atom from the bottom plane (elevation "0") to the top plane (elevation "1"). [*Hint*: On this scheme, for example, the side faces would be occupied by a single Sn atom at elevation " $\frac{1}{2}$."] (5 points)

page 6 of 6