1. [15 points]
1.a. [3 points] A project is a temporary endeavor undertaken to create a unique product or service.
Two characteristics make projects differ from operations:
[1 points] Temporary vs. ongoing
[1 points] Unique vs. repetitive
1.b. [4 points] Third-party beneficiary relationship: when each of two or more separate entities has a valid contract with a common third entity, they may be third-party beneficiaries of the contract between the "common" entity and the other noncommon entities.
1.c. [6 points] Give at least three of the following assumptions [2 points per assumption]:
2. Cash flows are known
3. Cash flows are in constant-value currency (dollars); that is, we ignore the effect of inflation and we assume technological stability
4. Interest rate is known. The rate of return i required by an organization is a function of its cost of capital, attitude toward risk, and investment policy.
5. Comparisons are made with before-tax cash flows
6. Comparisons do not include intangible considerations
7. Comparisons do not include consideration of the availability of funds to implement alternatives.
8. [20 points] (Note: Students can use the effective interest rate per year $=\left(1+\frac{0.08}{12}\right)^{12}-1=$ $0.083=8.3 \%$)
[3 points] The amount of the mortgage: $\mathrm{P}=\$ 400 \mathrm{~K} \times 0.8=\$ 320 \mathrm{~K}$
[3 points] Effective interest rate per month: $\mathrm{i}=\frac{8}{12}=0.67 \%=0.0067$
Number of monthly payments: 30 years x 12 months/year $=360$ months

Cash flow diagram [3 points]
[5 points] Equal monthly payments: $A=\$ 320 K x(A / P, i \%, n)=\$ 320 K x \frac{i(1+i)^{n}}{(1+i)^{n}-1}$

$$
A=\$ 320 \mathrm{~K} \times \frac{0.0067(1+0.0067)^{360}}{(1+0.0067)^{360}-1}=\$ 320 \mathrm{~K} \times 0.0737=\$ 2,357
$$

Solution 1: [6 points] The balloon payment at year $8=$ Present value of the monthly payments for the remaining years (22 years x 12 months/year $=264$ months)
$=\$ 2.357 \mathrm{~K} \times(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, \mathrm{n})=\$ 2.357 \mathrm{~K} \times \frac{(1+0.0067)^{264}-1}{0.0067(1+0.0067)^{264}}=\$ 291.44 \mathrm{~K}$
Solution 2: [6 points] The balloon payment at year $8=$ Future value (at year 8) of the mortgage Future value (at year 8) of the monthly payments for last 8 years (8 years x 12 months/year $=96$ months)
$=\$ 320 \mathrm{~K} x(\mathrm{~F} / \mathrm{P}, \mathrm{i} \%, \mathrm{n})-\$ 2.357 \mathrm{Kx}(\mathrm{F} / \mathrm{A}, \mathrm{i} \%, \mathrm{n})=\$ 320 \mathrm{~K} x(1+\mathrm{i})^{\mathrm{n}}-\$ 2.357 \mathrm{Kx} \frac{(1+\mathrm{i})^{\mathrm{n}}-1}{\mathrm{i}}$
$=\$ 320 \mathrm{~K} \times 1.0067^{96}-\$ 2.357 \mathrm{~K} \times \frac{1.0067^{96}-1}{0.0067}=\$ 607.51 \mathrm{~K}-\$ 316.08 \mathrm{~K}=\$ 291.43 \mathrm{~K}$
3. [25 points]

Cash flow diagram [3 points]
Step 1: Find IRR for each alternative
[1 point] $\mathrm{NPV}_{\mathrm{A}}=-\$ 200+\$ 59.7 \mathrm{x}(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, 5)=0 \rightarrow(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, 5)=3.3501$.
[2 points] Observe interest factor tables, $\mathrm{IRR}_{\mathrm{A}} \approx 15 \%$
[1 point] $\mathrm{NPV}_{\mathrm{B}}=-\$ 300+\$ 77.1 \times(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, 5)=0 \rightarrow(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, 5)=3.8911$.
[2 points] Observe interest factor tables, $\mathrm{IRR}_{\mathrm{B}} \approx 9 \%$
[1 point] $\mathrm{NPV}_{\mathrm{C}}=-\$ 600+\$ 165.2 \mathrm{x}(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, 5)=0 \rightarrow(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, 5)=3.6320$.
Observe interest factor tables, $\mathrm{IRR}_{\mathrm{C}}$ is somewhere between 11% and 12%.
$\mathrm{NPV}_{\mathrm{C}}(11 \%)=-\$ 600+\$ 165.2 \times 3.6959=\$ 10.56$
$\mathrm{NPV}_{\mathrm{C}}(12 \%)=-\$ 600+\$ 165.2 \times 3.6048=-\$ 4.49$
$[2$ points $] \rightarrow I R R_{C}=11 \%+\frac{0-\$ 10.56}{-\$ 4.49-\$ 10.56} \times(12 \%-11 \%) \approx 11.7 \%$
[1 point] Necessary condition: $\mathrm{IRR}_{\mathrm{C}} \geq$ MARR \rightarrow MARR $\leq 11.7 \%$
Step 2: Find IRR's for investment increments (Note: since we just want to know when C is preferred, we do not have to find $\operatorname{IRR}_{\mathrm{B}-\mathrm{A}}$. Of course, it is OK if you do that)
[1 point] $\mathrm{NPV}_{\mathrm{C}-\mathrm{B}}=-\$ 300+\$ 88.1 \times(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, 5)=0 \rightarrow(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, 5)=3.4052$.
Observe interest factor tables, $\operatorname{IRR}_{\mathrm{C}-\mathrm{B}}$ is somewhere between 12% and 15%.
[1 point] NPV $_{\text {C-B }}(12 \%)=-\$ 300+\$ 88.1 \times 3.6048=\$ 17.58$
[1 point] NPV $_{\text {C-B }}(15 \%)=-\$ 300+\$ 88.1 \times 3.3522=-\$ 4.67$
$\left[1\right.$ point] \rightarrow IRR $_{\mathrm{C}-\mathrm{B}}=12 \%+\frac{0-\$ 17.58}{-\$ 4.67-\$ 17.58} \times(15 \%-12 \%) \approx 14.37 \%$
[1 point] $\mathrm{NPV}_{\mathrm{C}-\mathrm{A}}=-\$ 400+\$ 105.5 \mathrm{x}(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, 5)=0 \rightarrow(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, 5)=3.7915$.
[3 points] Observe interest factor tables, $\mathrm{IRR}_{\mathrm{C}-\mathrm{A}} \approx 10 \%$.
[2 points] Sufficient condition: $\operatorname{IRR}_{\mathrm{C}-\mathrm{B}} \geq$ MARR and $\operatorname{IRR}_{\mathrm{C}-\mathrm{A}} \geq$ MARR \rightarrow MARR $\leq 10 \%$ [2 points] \rightarrow Necessary and sufficient conditions: MARR $\leq 11.7 \%$ and MARR $\leq 10 \%$
\rightarrow MARR $\leq 10 \%$.
4. [20 points]

The solutions are based on an eight-year analysis period and a replacement alternative 2 that is identical to the present alternative 2.

Alt. 1

Alt. 2

Cash flow diagram [4 points]
$\left[4\right.$ points] $\mathrm{NPV}_{1}=-\$ 20 \mathrm{~K}+\$ 6.5 \mathrm{~K} x(\mathrm{P} / \mathrm{A}, 8 \%, 8)+\$ 4 \mathrm{~K} x(\mathrm{P} / \mathrm{F}, 8 \%, 8)$

$$
=-\$ 20 \mathrm{~K}+\$ 6.5 \mathrm{~K} \times 5.7466+\$ 4 \mathrm{~K} \times 0.5403=\$ 19.51 \mathrm{~K}
$$

[4 points] $\mathrm{NPV}_{2}=-\$ 16 \mathrm{~K}+\$ 8.5 \mathrm{~K} \times(\mathrm{P} / \mathrm{A}, 8 \%, 8)-\$ 16 \mathrm{~K} \times(\mathrm{P} / \mathrm{F}, 8 \%, 4)$

$$
=-\$ 16 \mathrm{~K}+\$ 8.5 \mathrm{~K} \times 5.7466-\$ 16 \mathrm{~K} \times 0.7350=\$ 21.09 \mathrm{~K}
$$

[2 points] $\mathrm{NPV}_{2}>\mathrm{NPV}_{1}>0 \rightarrow$ Choose Alternative 2.
[2 points] This decision would be reversed if $\mathrm{NPV}_{1}^{\prime} \geq \mathrm{NPV}_{2}$ [4 points] $\rightarrow-\$ 20 \mathrm{~K}+\$ 6.5 \mathrm{~K} \times 5.7466+$ SV x $0.5403 \geq \$ 21.09 \mathrm{~K}$
$\rightarrow \mathrm{SV} \geq \frac{\$ 21.09 \mathrm{~K}+\$ 20 \mathrm{~K}-\$ 6.5 \mathrm{~K} \times 5.7466}{0.5403}=\$ 6.92 \mathrm{~K} \rightarrow$ Salvage value $\geq \$ 6,920$
5. [20 points] 5.a.

Decision tree [5 points]
5.b. [5 points]
[1.5 points] EV (Build new store) $=1.9 \times 0.2+0.3 \times 0.6-0.5 \times 0.2=\$ 0.46$ billion
[1.5 points] EV (Expand old store) $=1.5 \times 0.2+0.5 \times 0.6-0.3 \times 0.2=\$ 0.54$ billion
[1.5 points] EV (Do nothing) $=0.5 \times 0.2+0.0 \times 0.6-0.1 \times 0.2=\$ 0.08$ billion
[0.5 point $] \rightarrow$ Expected net present value of "expand old store" is greatest \rightarrow Expand old store.
5.c. [5 points]

Expected net present value (returns) of this optimal decision $=\$ 0.54$ billion $=\$ 540$ million
5.d. [5 points] Perfect information

New decision tree [1 point]
[2 points] EV (with perfect information) $=1.9 \times 0.2+0.5 \times 0.6-0.1 \times 0.2=\$ 0.66$ billion $=\mathbf{\$ 6 6 0}$ million
[2 points] EV (with perfect information) - EV (with no perfect information) $=\$ 660$ million $\$ 540$ million $=\$ 120$ million $>\$ 10$ million \rightarrow The building supply store should accept the ForSure's offer.

TOTAL: 100

