1. [15 points]

1.a. [3 points] A project is a **temporary** endeavor undertaken to create a **unique** product or service.

Two characteristics make projects differ from operations:

[1 points] Temporary vs. ongoing

[1 points] Unique vs. repetitive

1.b. [4 points] Third-party beneficiary relationship: when **each of two** or more separate entities has a **valid contract** with a **common third entity**, they may be third-party beneficiaries of the contract between the "common" entity and the other noncommon entities.

1.c. [6 points] Give at least three of the following assumptions [2 points per assumption]:

- 1. Cash flows are known
- 2. Cash flows are in constant-value currency (dollars); that is, we ignore the effect of inflation and we assume technological stability
- 3. Interest rate is known. The rate of return i required by an organization is a function of its cost of capital, attitude toward risk, and investment policy.
- 4. Comparisons are made with before-tax cash flows
- 5. Comparisons do not include intangible considerations
- 6. Comparisons do not include consideration of the availability of funds to implement alternatives.

2. [20 points] (Note: Students can use the effective interest rate per year = $(1 + \frac{0.08}{12})^{12} - 1 =$

0.083 = 8.3%)

[3 points] The amount of the mortgage: $P = $400K \times 0.8 = $320K$

[3 points] Effective interest rate per month: $i = \frac{8}{12} = 0.67\% = 0.0067$

Number of monthly payments: 30 years x 12 months/year = 360 months

Cash flow diagram [3 points]

[5 points] Equal monthly payments: A = \$320K x (A/P, i%, n) = \$320K x $\frac{i(1+i)^n}{(1+i)^n - 1}$

A =
$$320K \times \frac{0.0067(1+0.0067)^{360}}{(1+0.0067)^{360}} = 320K \times 0.0737 = 2,357$$

Solution 1: [6 points] The balloon payment at year 8 = Present value of the monthly payments for the remaining years (22 years x 12 months/year = 264 months)

for the remaining years (22 years x 12 months/year = 264 months) = 2.357K x (P/A, i%, n) = 2.357K x $\frac{(1 + 0.0067)^{264} - 1}{0.0067(1 + 0.0067)^{264}} = 291.44$ K

Solution 2: [6 points] The balloon payment at year 8 = Future value (at year 8) of the mortgage – Future value (at year 8) of the monthly payments for last 8 years (8 years x 12 months/year = 96 months)

= \$320K x (F/P, i%, n) - \$2.357Kx (F/A, i%, n) = \$320K x
$$(1 + i)^n$$
 - \$2.357Kx $\frac{(1 + i)^n - 1}{i}$
= \$320K x 1.0067⁹⁶ - \$2.357K x $\frac{1.0067^{96} - 1}{0.0067}$ = \$607.51K - \$316.08K = **\$291.43K**

3. [25 points]

Cash flow diagram [3 points]

Step 1: Find IRR for each alternative

[1 point] NPV_A = -\$200 + \$59.7 x (P/A, i%, 5) = 0 → (P/A, i%, 5) = 3.3501. [2 points] Observe interest factor tables, IRR_A ≈ 15% [1 point] NPV_B = -\$300 + \$77.1 x (P/A, i%, 5) = 0 → (P/A, i%, 5) = 3.8911. [2 points] Observe interest factor tables, IRR_B ≈ 9% [1 point] NPV_C = -\$600 + \$165.2 x (P/A, i%, 5) = 0 → (P/A, i%, 5) = 3.6320. Observe interest factor tables, IRR_C is somewhere between 11% and 12%. NPV_C (11%) = -\$600 + \$165.2 x 3.6959 = \$10.56 NPV_C (12%) = -\$600 + \$165.2 x 3.6048 = -\$4.49 [2 points] → IRR_C = 11% + $\frac{0 - $10.56}{-$4.49 - $10.56}$ x (12% - 11%) ≈ 11.7%

[1 point] Necessary condition: $IRR_C \ge MARR \rightarrow MARR \le 11.7\%$

Step 2: Find IRR's for investment increments (Note: since we just want to know when C is preferred, we do not have to find IRR_{B-A}. Of course, it is OK if you do that) [1 point] NPV_{C-B} = -\$300 + \$88.1 x (P/A, i%, 5) = 0 → (P/A, i%, 5) = 3.4052. Observe interest factor tables, IRR_{C-B} is somewhere between 12% and 15%. [1 point] NPV_{C-B} (12%) = -\$300 + \$88.1 x 3.6048 = \$17.58 [1 point] NPV_{C-B} (15%) = -\$300 + \$88.1 x 3.3522 = -\$4.67 [1 point] → IRR_{C-B} = 12% + $\frac{0 - $17.58}{-$4.67 - $17.58}$ x (15% - 12%) ≈ 14.37% [1 point] NPV_{C-A} = -\$400 + \$105.5 x (P/A, i%, 5) = 0 → (P/A, i%, 5) = 3.7915. [3 points] Observe interest factor tables, $IRR_{C-A} \approx 10\%$.

[2 points] Sufficient condition: $IRR_{C-B} \ge MARR$ and $IRR_{C-A} \ge MARR \rightarrow MARR \le 10\%$

[2 points] \rightarrow Necessary and sufficient conditions: MARR $\leq 11.7\%$ and MARR $\leq 10\%$ \rightarrow MARR $\leq 10\%$.

4. [20 points]

The solutions are based on an eight-year analysis period and a replacement alternative 2 that is identical to the present alternative 2.

Cash flow diagram [4 points]

 $\begin{array}{ll} [4 \text{ points}] \ NPV_1 &= -\$20K + \$6.5K \ x \ (P/A, 8\%, 8) + \$4K \ x \ (P/F, 8\%, 8) \\ &= -\$20K + \$6.5K \ x \ 5.7466 + \$4K \ x \ 0.5403 = \$19.51K \\ [4 \text{ points}] \ NPV_2 &= -\$16K + \$8.5K \ x \ (P/A, 8\%, 8) - \$16K \ x \ (P/F, 8\%, 4) \\ &= -\$16K + \$8.5K \ x \ 5.7466 - \$16K \ x \ 0.7350 = \$21.09K \\ [2 \text{ points}] \ NPV_2 > NPV_1 > 0 \rightarrow Choose \ Alternative 2. \end{array}$

[2 points] This decision would be reversed if NPV₁ \ge NPV₂ [4 points] \rightarrow -\$20K + \$6.5K x 5.7466 + SV x 0.5403 \ge \$21.09K \rightarrow SV \ge $\frac{$21.09K + $20K - $6.5K x 5.7466}{0.5403} = $6.92K \rightarrow$ Salvage value \ge \$6,920

5. [20 points] 5.a.

Decision tree [5 points]

5.b. [5 points] [1.5 points] EV (Build new store) = 1.9x0.2 + 0.3x0.6 - 0.5x0.2 = \$0.46 billion [1.5 points] EV (Expand old store) = 1.5x0.2 + 0.5x0.6 - 0.3x0.2 = \$0.54 billion [1.5 points] EV (Do nothing) = 0.5x0.2 + 0.0x0.6 - 0.1x0.2 = \$0.08 billion [0.5 point] \rightarrow Expected net present value of "expand old store" is greatest \rightarrow Expand old store.

5.c. [5 points]

Expected net present value (returns) of this optimal decision = \$0.54 billion = \$540 million

5.d. [5 points] Perfect information

New decision tree [1 point]

[2 points] EV (with perfect information) = 1.9x0.2 + 0.5x0.6 - 0.1x0.2 =\$0.66 billion = \$660 million

[2 points] EV (with perfect information) – EV (with no perfect information) = \$660 million - \$540 million = \$120 million > \$10 million \rightarrow The building supply store should accept the ForSure's offer.

TOTAL: 100