Mechanics of Materials (CE130-I) Fall 2006

The First Mid-term Examination

Problem 1. (25 points)

Derive the equilibrium equation for a two-dimensional infinitesimal element in the vertical (Y) direction. Note that the thickness of the element (z-direction) is taken as 1 (unit length), and X, Y are the body forces with the unit of force per unit volume.

Figure 1: A 2D infinitesimal element

Problem 2 (25 points)

Consider the following two-bar system (Figure 2). The flexibilities of two elastic bars are given as f_1 and f_2 , the lengths of the two bars are L_1 and L_2 , and the thermal expansion coefficients of the two bars are given as α_1 and α_2 . The right end of the second bar has a distance Δ from the wall. There is a temperature increase of ΔT . Find the reaction forces at the point A, i.e. R_A , and at the point C, i.e. R_C , for two different cases:

- $(1) \Delta \leq (\alpha_1 L_1 + \alpha_2 L_2) \Delta T;$
- (2) $\Delta > (\alpha_1 L_1 + \alpha_2 L_2) \Delta T$.

Hints: $\Delta_P = fP$ and $\Delta_T = \alpha L \Delta T$.

Figure 2: A possible statically Indeterminate System

Problem 3 (25 points)

Two cylindrical shafts are made of different materials, i.e. shear modulus $G_1 \neq G_2$, but have the same length L. One solid cylinder of diameter 2c = d, and the other is a hollow cylinder with outer radius $c_0 = R$ and inner radius $c_i = 0.5R$. They are subjected to the same external torque, T_0 , as indicated in Figure 3.

- (1) If the maximum shear stress in both shafts is the same, find the relationship between $c \sim R$?
- (2) If the angle-of-twist at the free end (where the external torque is applied) ϕ is the same for both shafts, find the relationship of $d \sim R$?

Hints:

For a solid cylinder :
$$J=\frac{\pi d^4}{32}$$
 (1)
For a hollow cylinder : $J=\frac{\pi}{32}(d_o^4-d_i^4),\ d_0=2c_o,\ d_i=2c_i$ (2)

For a hollow cylinder :
$$J = \frac{\pi}{32}(d_o^4 - d_i^4), d_0 = 2c_o, d_i = 2c_i$$
 (2)

$$\tau_{\text{max}} = \frac{Tc}{J}, \quad \phi = \frac{TL}{GJ}$$
(3)

Figure 3: Torsion of two shafts

Problem 4 (25 points)

Consider a very long (1000 meters in z-direction) concrete block with its both ends fixed. The cross section of the concrete block (section in x-y plane) is a 5 meter square. Suppose that in x-y plane, the block is subjected biaxial tensile stress load, namely, $\sigma_{xx} = 5MP_a$ and $\sigma_{yy} = 10MP_a$. This is a typical plane strain state ($\epsilon_{zz} = 0$). Let $E = 100MP_a$ and Poisson's ratio $\nu = 0.3$. Find σ_{zz} , ϵ_{xx} , and ϵ_{yy} .

Hints: The equations of the generalized Hooke's law are

$$\epsilon_{xx} = \frac{\sigma_{xx}}{E} - \nu \frac{\sigma_{yy}}{E} - \nu \frac{\sigma_{zz}}{E}$$

$$\epsilon_{yy} = -\nu \frac{\sigma_{xx}}{E} + \frac{\sigma_{yy}}{E} - \nu \frac{\sigma_{zz}}{E}$$

$$\epsilon_{zz} = -\nu \frac{\sigma_{xx}}{E} - \nu \frac{\sigma_{yy}}{E} + \frac{\sigma_{zz}}{E}$$