CE 120 Structural Engineering Examination \#1

Solution 1

a) Cutting though C and between D and G : unknowns $=\mathrm{U}=6$ (3 reactions, 2 internal forces at C and force in DG); Equations $=\mathrm{E}=2 \times 3=6$ for 2 FBD 's
$\mathrm{n}=\mathrm{U}-\mathrm{E}=0$; Statically determinate and stable (reactions are not parallel or intersecting).
If member DG is absent, it is unstable as $\mathrm{n}=-1$.
b)

Bending Moment Diagram:

Solution 2

$$
\gamma_{\text {concrete }}=150 \mathrm{lb} / \mathrm{ft}^{3}
$$

$$
\gamma_{\text {steel }}=490 \mathrm{lb} / \mathrm{ft}^{3}
$$

a) Beam DH:

Dead load from the slab $=(150)(5 / 12)(5)=312.5 \mathrm{lb} / \mathrm{ft}$
Area of cross section of the beam $=[(2)(4)(1)+(8)(0.5)] / 144=1 / 12 \mathrm{ft}^{2}$ Self weight of the beam $=490 / 12=40.83 \mathrm{lb} / \mathrm{ft}$
$312.5+40.83=353.33 \mathrm{lb} / \mathrm{ft}$

Beam CG:

Dead load from the slab $=(150)(5 / 12)(10)=625 \mathrm{lb} / \mathrm{ft}$
Area of cross section of the beam $=[(2)(4)(1)+(8)(0.5)] / 144=1 / 12 \mathrm{ft}^{2}$ Self weight of the beam $=490 / 12=40.83 \mathrm{lb} / \mathrm{ft}$
$625+40.83=665.83 \mathrm{lb} / \mathrm{ft}$

Girder ABCD:

Area of cross section of the beam $=[(2)(8)(2)+(12)(1.5)] / 144=0.347 \mathrm{ft}^{2}$
Self weight of the beam $=170.14 \mathrm{lb} / \mathrm{ft}$

10542.08 lb

Moment Diagram:

$\mathrm{I}=2\left[(1 / 12)(8)\left(2^{3}\right)+(16)\left(7^{2}\right)\right]+(1 / 12)(1.5)\left(12^{3}\right)=1794.67 \mathrm{in}^{4}$
Maximum bending moment is in the center of the girder ABCD. It is $99.04 \mathrm{~K}-\mathrm{ft}$. $\sigma=\mathrm{Mc} / \mathrm{I}=(99.04)(12)(8) /(1794.67)=5.3 \mathrm{ksi}$
Maximum shear is at the ends $=10.54 \mathrm{~K}, \mathrm{v}=\mathrm{VQ} / \mathrm{Ib}$
Shear stress at the joint (inside the flange): $v=(10.54)(16)(7) /(1794.67)(8)=82.1 \mathrm{psi}$
Shear stress at the joint (inside the web): $\mathrm{v}=(10.54)(16)(7) /(1794.67)(1.5)=438.5 \mathrm{psi}$
Shear stress in center of web: $v=(10.54)[(16)(7)+(6)(1.5)(3)] /(1794.67)(1.5)=544.2 \mathrm{psi}$

