Midterm 1:
 Tension and Compression Members

10/14/08, 502 Davis Hall, 2 hours

Name \qquad

Problem	Points	Maximum
1		25
2		25
3		25
4		25
total		100

Honor Pledge:
I have neither give nor received aid during this examination, nor have I concealed any violation of the Honor Code.

Problem 1: (25\%)

Determine the governing effective area $\left(A_{e}=U A_{n}\right)$ for the C12x30 channel shown (not the gusset plate). Standard holes are made for 1 -inch diameter bolts by punching. Compute the appropriate shear lag factor and include it in your calculation. Do not consider block shear.

Problem 2: (25\%)

A W24x76 A992 tension member is connected at it two ends to gusset plates as shown. Standard holes are made for $7 / 8$-inch diameter bolts by punching. Compute the design strength ϕR_{n} of this member taking into account yielding, ultimate tension, and block shear limit states at both ends of the member. To compute the shear lag factor assume the following: on the left end, gusset plates are connected to the top and the bottom flange; on the right end, two gusset plates are connected on either side of the web (as shown in Figure C-D3.1 in the commentary of the AISC Manual).

Problem 3: (25\%)

An 15-foot tall W14x??? A992 steel column is a part of a frame structure. It carries a factored load of $P_{u}=2008$ kips. Buckling in the plane of the frame occurs about strong axis, while buckling out-of-plane occurs about the weak axis. The effective length factor K_{y} for the weak axis is equal to 1.0 .

1. Select a W -section for this column, assuming that the frame is not braced (sway may happen). The effective length factor K_{x} for the strong axis is equal to 1.9.
2. Select a W -section for this column, assuming that the frame is braced (sway can not happen). The effective length factor K_{x} for the strong axis is equal to 0.76 .

Problem 4: (25\%)

Effective lengths of the column are: $(K L)_{x}=30$ feet and $(K L)_{y}=22$ feet.

1. Determine the design strength $\left(\phi P_{n}\right)$ of the built-up A992 steel column whose section is shown below using the AISC LRFD provisions. Check if the section is compact.
2. Determine the AISC LRFD design strength of the A992 W14x730 column section. Is this cross section is compact?
3. Compare the results. The sections have roughly the same area: why is one stronger than the other?

Reminder: properties of a built up cross-section can be computed using the parallel axis theorem:

$$
\begin{aligned}
A & =\sum A_{\text {plates }} \\
I_{x} & =I_{\text {plates }, x}+\sum A_{\text {plates }, x} d_{\text {plates }, x}^{2} \\
I_{y} & =I_{\text {plates }, y}+\sum A_{\text {plates }, y} d_{\text {plates }, y}^{2}
\end{aligned}
$$

where $d_{\text {plates }}$ is the distance from the centroid of the plate area to the centroid of the cross section.

2008 10/14
mittern
Probem 1

$$
\begin{array}{ll}
c_{12} \times 30 & A_{y}=8.81^{2} n^{2} \quad t w=0.510^{\prime \prime} \quad \bar{x}=0.674^{\prime \prime} \\
d_{b}=1^{\prime \prime} & d_{n}=1^{\prime \prime}+1 / 8^{\prime \prime}=9 / 3^{\prime \prime}
\end{array}
$$

$$
\begin{aligned}
\text { Case } 1: A_{n} & =A_{j}-1(d n)\left(t_{w}\right) \\
A_{n} & =8.81-(9 / 6)(0.51) \\
A_{n} & =8.24 \mathrm{in}^{2}
\end{aligned}
$$

$$
\text { Case } 2: A_{n}=A_{y}-3\left(d_{1}(t) s\right)+2\left(\frac{s^{2}}{4 q}\right) t \omega
$$

(3)
2

$$
A_{n}=8.81-3(9 / 8)(0.51)+2\left(\frac{z^{2}}{4(3.0)}\right)(0.510)
$$

$$
A_{n}=8.81-1.72+0.34
$$

$$
i_{n}=7.42 \operatorname{in}^{2} \quad \text { Case } 2
$$

Cove 3:

$$
\begin{aligned}
& A_{n}=A_{y}-2(d n)(t w) \\
&=6.01-2(9 / 0)(0.50)=7.66 \mathrm{in}^{2} \\
& A_{n}=\frac{9}{8}\left[\mathrm{An}_{n}\right]=\frac{9}{2}(7.60)=8.62 \mathrm{in}^{2} \\
& u=1-\frac{\bar{x}}{L}=1-\frac{0.674}{10}=0.933 \\
& A_{2}=u_{A_{n}}=0.93(7.43)=6.93 \mathrm{in}^{2} \\
& A_{2}=6.93 \\
& u=0.933
\end{aligned}
$$

Problem 2
fracture Bra $=0.75$ the
lett side: $A_{n}=A g-4\left(d_{h}\right)\left(t_{f}\right)$

$$
=22.4-4(1)(0.65)=19.68 \mathrm{in}^{2}
$$

u

from Part 1 of Manual!

$$
\begin{aligned}
& \bar{x}=3.0 \mathrm{in} \\
& \begin{aligned}
u=1-\frac{\bar{x}}{l}=1-\frac{3}{6}=0.5 \\
u=0.5
\end{aligned} \\
& .5(19.68)=9.86 \mathrm{~m}^{2} \\
& \\
&
\end{aligned}
$$

$$
A_{e}=U H_{n}=0.5(19.65)=9.86 \mathrm{~m}^{2}
$$

Right side: $A_{n}=A g-3\left(d_{n}\right)(t \omega)$

$$
\bar{x}
$$

$$
\begin{aligned}
& =22.4-(3)(1)(0.44) \\
& =21.08 \mathrm{in}^{2} \quad A_{n}=21.08 \mathrm{in}^{2} \\
& b_{f}=8.99^{\prime \prime} \quad b_{f}>\frac{2}{3}+f \\
& t f=0.48 \quad \text { Tab 6 D3.1 }
\end{aligned}
$$

Cove 7

$$
u=0.70
$$

$$
\begin{aligned}
& W=4 \times 76 \quad A 992 \\
& d_{b}=7 / y^{\prime \prime} \\
& H g=22.4 \mathrm{in}^{2} \\
& F y=50 \mathrm{kci} \\
& F_{u}=65 \mathrm{ks} \\
& d_{n}=7 / 8+1 / 8=1^{\prime \prime} \\
& t_{f}=0.66 \mathrm{in} \\
& t_{w}=0.44 \mathrm{in} \\
& b_{f}=8.99 \mathrm{in} \\
& \text { yield } \sigma R_{n}=0.9 \text { FlAg }=0.9(50)(22.4)=1008 \text { Lies } \\
& O R_{n}=1008 \mathrm{kips}
\end{aligned}
$$

$$
A_{e}=U A_{n}=0.7(21.08)=14.76 \mathrm{in}^{2}
$$

$$
\text { He }=14.76 \mathrm{in}^{2}
$$

Lett side grn $=0.75(65)(9.86)=480.7$ kips
Rions side \quad ER $=075(65)(14.76)=\frac{6 R_{n}=480.7 \text { tips }}{719.55 \text { tips }}$

$$
p R_{n}=719.55 \mathrm{kips}
$$

Block swar
Uttsid :

plon new

$$
b p_{n}=636 \text { vips }
$$

Right side:

$$
\begin{aligned}
A g v & =2(11) t_{w}=2(11)(0.44)=9.68 \mathrm{in}^{2} \\
A_{v} & =A g v-2(3.5) d n t w \\
& =9.68-2(3.5)(1)(0.44)=6.6 \mathrm{in}^{2}
\end{aligned}
$$

$$
A_{g t}=6 t w=2.64 \mathrm{~m}^{2}
$$

$$
A_{n t}=A_{C t}-2 d_{A} t_{1}=1.76 \mathrm{in}^{2}
$$

$$
\begin{aligned}
& P_{n}=0.6(65)(6-6)+(65)(1.76) \leq 0.6(50)(9.68)+65(1 .) 6 \\
& P_{n}=371.8 \leq 404.8 \\
& 2 \text { go wevn }
\end{aligned}
$$

$$
\begin{aligned}
& F_{n}=0.6 F_{u} H_{n}+U_{b S}^{\prime \prime} F_{u} A_{a t} \leq 0.6 \text { FyAgy }+U_{b s} F_{\text {ubgt }} \\
& R_{n}=0.6(65)(4.96)+65(4.08) \leq 0.6(50)(2.76)+65(4.08) \\
& r_{n}=848.64 \leq 918 \\
& \text { e-querns } \\
& \mathscr{D P}=0.75(848.64)=636 \text { tios }
\end{aligned}
$$

$$
\begin{aligned}
\theta R_{n}=0.75(37(.8)= & 278.9 \mathrm{kips} \\
& \operatorname{DRn}_{n}=279 \mathrm{kips}
\end{aligned}
$$

NBloke shar en the nght sibe quanes

$$
b E_{n}=279 \mathrm{kips}
$$

Problem 3

$$
\begin{array}{ccc}
L=15^{\prime} & \text { A992 } \quad F_{y}=50 \mathrm{ksi} \quad F_{e}=65 k_{i} \\
P_{u}=2008 \text { kips } \quad \mathrm{W} 14 ? & \mathrm{ky}=1.0
\end{array}
$$

Part 1 not braced

$$
\begin{aligned}
& k_{x}=1.9 \\
& k_{y}=1.0
\end{aligned} \quad(k c)_{y}=15^{1}
$$

Load Cal Table: \rightarrow Ting wll $\times 176$ ofn $=2010$ kips

$$
\frac{r_{x}}{r_{y}}=1.60 \quad\left(k \text { byborn }=\frac{(64 x}{5 / 9}=\frac{(1.9 \cdot 15)}{1 \cdot 60}=17.8\right.
$$

(kl)yieguiv $>$ (kl) $\rightarrow x$-axis gowems
Fe-enter wl Cecumeguil $=17.6 \rightarrow \theta_{c} p_{n}=1890<2000$

vie wlyxlas.
Port 2

$$
k_{x}=0.7 e \quad k_{y}=1.0
$$

$$
\frac{r x}{r_{y}}=1.0 \quad(b) \text { y.egur }=\frac{(0.76 \cdot 15)}{1-6}=7.125
$$

ebly, eguiu 2 (kety \rightarrow asswmphon was corret.

Lese w14x176

Problem 4

$$
(k L)_{x}=30^{\prime} \quad(k L)_{y}=22
$$

$$
\begin{gathered}
1992 \quad F y=50 \mathrm{ki} \\
\quad F=65 \mathrm{ki} \\
E=29000 \mathrm{ksi}
\end{gathered}
$$

1) EPA. Computhess.

$$
\begin{aligned}
& A=A_{\text {web }}+A_{\text {plates }}=2\left(22^{\prime \prime}\right)\left(2^{\prime \prime}\right)+2\left(4.5^{\prime \prime}\right)\left(14^{\prime \prime}\right) \\
& A=214 \mathrm{in}^{2} \\
& I_{x}=\frac{1}{12}\left(18^{\prime \prime}\right)\left(22^{\prime \prime}\right)^{3}-\frac{1}{12}\left(14^{\prime \prime}\right)\left(13^{\prime \prime}\right)^{3} \\
& =15972-2563.2=13409 \mathrm{in} 4 \\
& I_{x}=13409 \mathrm{in}^{4} \\
& I_{f}=\frac{1}{12}\left(22^{\prime \prime}\right)\left(18^{\prime \prime}\right)^{3}-\frac{1}{2}\left(13^{3}\right)\left(14^{\prime}\right)^{2} \\
& =10692-2972=779 \text { in }^{4} \\
& I_{y}=7719 \mathrm{in}^{4} \\
& r_{x}=\sqrt{\frac{I x}{4}}=\sqrt{\frac{8409}{214}}=7.92 \mathrm{in} \\
& r_{y}=\sqrt{\frac{I_{y}}{h}}=\sqrt{\frac{7719}{214}}=6.00 \mathrm{in}
\end{aligned}
$$

$\left(\frac{k}{r}\right)_{x}=\frac{35 \cdot 12}{79}=45.5 \rightarrow$ quins; member will bunche about

$$
\begin{aligned}
& \text { the x-a勋 } \\
& \left(\frac{4}{r}\right)_{4}=\frac{22 \cdot 12}{6 \cdot 0}=44 \\
& F_{e}=\frac{\pi^{2} E}{\left(\frac{1 L L}{r}\right)_{x}^{2}}=\frac{\pi^{2}(29000)}{(45.5)^{2}}=138.3 \\
& 4.71 \sqrt{\frac{E}{F}}=4.71 \sqrt{\frac{2900}{50}}=113.4 \\
& \left(\frac{k}{r}\right)_{x}=45.5<4.71 \sqrt{E}=13.4 \\
& \rightarrow F_{r}=\left[0.658^{\mathrm{F}} \mathrm{~F}_{\mathrm{E}}\right]=\left[0 . \cos \frac{50}{138.4}\right] .50 \\
& \text { For }=42.904 i
\end{aligned}
$$

tical also use Tace $4-22$

$$
\begin{aligned}
D P Q_{n}=\varnothing \text { Furtg }=0.9(42.98)(214) & =8277.9 \mathrm{kips} \\
D P_{n} & =8270 \mathrm{kips}
\end{aligned}
$$

Check if section is compact:
(1) $\lambda=\frac{b}{t}=\frac{14^{4}}{4.5^{11}}=3.11$
$2 \lambda=\frac{b}{t}=\frac{22^{\prime \prime}}{2 n}=11$
Tabe B4.1 $\quad \lambda_{r}=1.49 \sqrt{\frac{E}{F_{y}}}=1.4 \sqrt{\frac{29000}{50}}=35.9$
Both λ are swaker than $\lambda_{r}=35.9$

$$
\begin{aligned}
& \text { 2) } \\
& \text { W14x730 OPM } \\
& r_{x}=8.17 \mathrm{im} \quad r_{y}=4.69 \mathrm{im} \quad \mathrm{Ag}=215 \mathrm{in}^{2} \\
& \left(\frac{L}{r}\right)_{x}=\frac{(30 \cdot 12)}{8.17}=44 \\
& \begin{array}{r}
\left(\frac{k}{r}\right)_{y}=\frac{(22.12)}{4.69}=50.3 \rightarrow \text { qouens; heember will } \\
\text { bend about y-anis }
\end{array}
\end{aligned}
$$

From Tabu $4-1 \quad O P_{n}=767^{\circ}$ tiks
or $\quad 4.71 \sqrt{\frac{E}{F_{y}}}=113.4 \quad\left(\frac{F L}{r}\right)_{y}-4.71 \sqrt{\frac{E}{F_{y}}}$

$$
\begin{aligned}
& F_{C r}=\left[0.055^{F y}\right] \cdot F y \\
& F_{e}=\frac{T^{2 L}}{\left(\frac{k}{r}\right)_{4}^{2}}=90.3 \mathrm{ki} \rightarrow \text { Fer }=39.6 \mathrm{ki} \\
& \text { OPD }=(0.9)(39.6)(25)=7674 \text { hips } \\
& Q P=7674 \mathrm{kn}
\end{aligned}
$$

Check compectress:
RTable $1-1$ says hember $i s$ compact

$$
\begin{aligned}
& \frac{0 r}{\lambda}=\frac{b f}{2 t+} 1.82 \quad<\quad \lambda_{r}=0.56 \sqrt{\frac{E}{V_{y}}}=13.5 \quad 0 t \\
& \lambda=\frac{h}{t w}=3.71 \quad 2 \quad \lambda_{r}=1.49 \sqrt{\frac{E}{\sqrt{7}}}=35.9 \mathrm{at}
\end{aligned}
$$

3) Compare

The buit up shape is stouger than the w- rhapo becuuse byas a larger rasios ot gytathon abot the fayis which makes tow a larger Iy. Due to incracie values t er, the buit-up Suape is luore difticutt to becte dowt the weat axis. (yaxis).

