CE 130 - MIDTERM EXAMINATION NO. 2

## Please Note:

1. Write your answers on these sheets.
2. Show all computations; identify your answers.

|  | Problems | Maximum Points | Points Scored |
| :---: | :---: | :---: | :---: |
|  | 1 | 8 |  |
|  | 2 | 10 |  |
|  | 3 | 12 |  |
| Total |  | 30 |  |

NAME: $\qquad$

1. A T-beam shown in the figure is made of a material with tensile proportional limit of 3000 psi and a compressive proportional limit of 6000 psi. If these stresses are not to be exceeded, find the magnitude of the largest force $F$ which may be applied to this beam in (a) downward direction (b) upward direction. Consider only the bending stresses obtained from the flexure formula. For the given T-section the neutral axis ( $\mathrm{n}-\mathrm{a}$ ) is 5.5 in . from the bottom and $I=97 \mathrm{in}^{4}$ about the n.a.

2. A box beam is fabricated by nailing plywood sides to two longitudinal wooden pieces, as shown in the figure. If the vertical shear at a section is $V=12 \mathrm{kN}$, determine:
(a) shear stress in the plywood at the neutral axis.
(b) shear force in one of the nails near the top of the beam.

The neutral axis of the cross-section is 180 mm from the bottom of the section and moment of inertia of the section about the neutral axis is $541 \times 10^{6} \mathrm{~mm}^{4}$.

3. A machine bracket is loaded as shown in Fig. (a).
a) Stress analysis of the bracket gives the following stress components acting on element A: 100 psi due to bending, 1500 psi due to axial force, and 600 psi due to shear. (Note that these are stress magnitudes only; their directions and senses must be determined by inspection). Indicate the resulting stresses on a drawing of the element.


Fig. (a)
b) If the stresses at some other point are as shown in Fig. (b), find the principal stresses. Show the results on a properly oriented element.


Fig. (b)

Spring 2005 CE 130


1. Max Bending moment occurs at $F$

$$
\begin{aligned}
M & = \pm\left(\frac{3}{10} F\right) 7= \pm 2.1 \mathrm{~F} \text { lb -ft } \\
& = \pm 25.2 \mathrm{~F} 1 \mathrm{~b}-\mathrm{in}
\end{aligned}
$$

2. F acting downward

Top in compression
Bottom in tension

$$
\begin{aligned}
& \sigma_{\text {top }}=6000=\frac{25.2 F \times 3.5}{97} \Rightarrow F=6599 \mathrm{lb} \\
& \sigma_{\text {bot }}=3000=\frac{25.2 F \times 5.5}{97} \Rightarrow F=2100 \mathrm{lb}
\end{aligned}
$$

$\therefore \sigma_{\text {bot governs }} \Rightarrow \quad F=21001 \mathrm{~b}$
3.F acting upward

Top in tension Bottom in compression

$$
\begin{aligned}
& \sigma_{\text {top }}=3000=\frac{25.2 F \times 3.5}{97} \Rightarrow F=3299 \mathrm{lb} \\
& \sigma_{\text {bot }}=6000=\frac{25.2 F \times 5.5}{97} \Rightarrow F=4199 \mathrm{lb}
\end{aligned}
$$

$\therefore$ Fop governs $^{\Rightarrow} \quad F=3299 \mathrm{lb}$
2.
a) 工@ plywood in N.A.

$$
\begin{aligned}
& =\frac{V Q}{I t}=\frac{(12 \mathrm{kN})\left(1.768 \times 10^{6} \mathrm{~mm}^{3}\right)}{\left(541 \times 10^{6} \mathrm{~mm} \mathrm{~m}^{4}\right)(40 \mathrm{~mm})}=\underline{=0.98 \mathrm{~N} / \mathrm{mm}} \\
& Q=(100 \times 40)(200)+2(20 \times 220)(110)=1.768 \times 10^{6} \\
& \mathrm{~mm}^{3}
\end{aligned}
$$

b) Force on nail

$$
\begin{aligned}
& q=\frac{V Q}{I}=\frac{(12 \mathrm{kN})\left(8.0 \times 10^{5} \mathrm{~mm}^{3}\right)}{\left(541 \times 10^{6} \mathrm{~mm}^{4}\right)}=17.7 \mathrm{~N} / \mathrm{mm} \\
& Q=(100 \times 40)(200)=8.0 \times 10^{5} \mathrm{~mm}^{3} \\
& F=\frac{(50 \mathrm{~mm})(17.7 \mathrm{~N} / \mathrm{mm})}{2}=444 \mathrm{~N}
\end{aligned}
$$

3. 

a

b 1 Determine principle stresses

$$
\sigma_{1,2}=\frac{1000}{2} \pm \sqrt{\left(\frac{1000}{2}\right)^{2}+(1200)^{2}} \Rightarrow
$$

$$
\begin{aligned}
& \gamma_{1}=1800 \\
& \gamma_{2}=-800
\end{aligned}
$$

2 Determine orientation

$$
\tan 2 \theta_{1}=\frac{-1200}{(-1000) / 2} \Rightarrow \theta_{1}<123.7^{\circ}
$$

3. $\sigma_{1}$ acts on which plane?

$$
\begin{aligned}
\sigma_{x} & =\frac{1000}{2}+\frac{-1000}{2} \cos 2\left(33.7^{\circ}\right)+(-1200) \sin 2(33.7) \\
& =-800
\end{aligned}
$$



