Name: _SOLUTIONS

UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Materials Science and Engineering, Prof. E. E. Haller

Engineering 45

Exam #1 (40 pts.), Sept. 26

1.) (2 pts.) Gallium, one of the most important components of optoelectronic semiconductors, has an atomic weight of 69.75. It consists of the two isotopes ⁶⁹Ga and ⁷¹Ga. What are the relative abundances of these two isotopes?

$$69.75 = \times 69 + (1-x)71$$

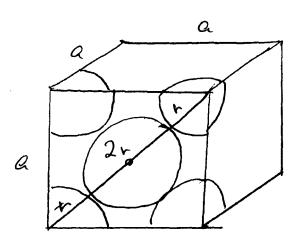
$$= -2x + 71$$

$$\times = 0.625$$

$$62.5\% Gaa$$

$$37.5\% Gaa$$

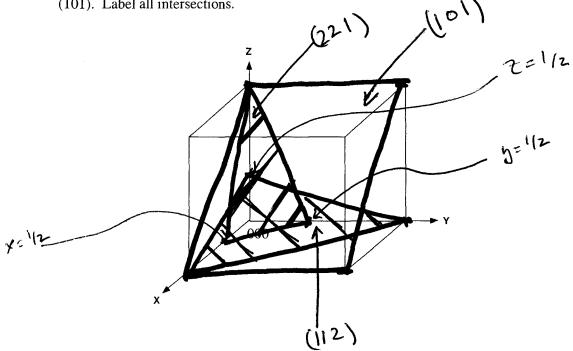
2.) (5 pts.) The hydrogen atom consists of one proton binding one electron with an energy of $E_1 = -13.6eV$ in the ground state. There are higher lying bound states with energies

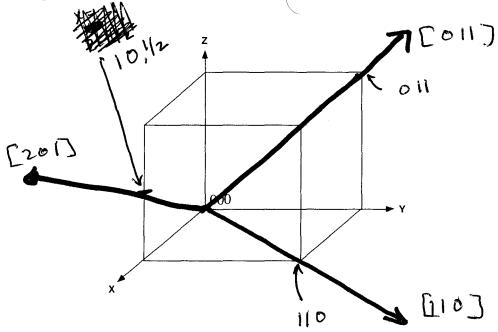

$$E_n = \frac{1}{n^2} E_1 \quad (n = 2, 3,)$$

Assume the hydrogen atom has been excited into the n=2 state. Will shining visible light onto this excited hydrogen atom lead to full ionization? (visible range: $2eV < E_{photon} < 3eV$) $E_{photon} = hv = hc/\lambda$, with $h = 4.1375 \times 10^{-15} \, eV$ s Show your work!

$$E_2 = \frac{1}{2^2} (-13.6 \text{ eV})$$

$$= -3.4 \text{ eV}$$
Visible light (2eV< E<3eV) cannot ionize | 1 in its n=2 state


3.) (4 pts.) Calculate the atomic packing factor (APF) for a FCC metal. (Hint: make a sketch of the FCC unit cell and figure out how many atoms occupy the cell.)


Total unit cell volume: a3

AFP =
$$\frac{1}{6}\pi \left(\frac{12}{3}\right)^3 = \frac{16}{3}\pi \left(\frac{1}{4}a\sqrt{2}\right)^3$$

4.) (3 pts.) Using the cube below, show the following crystal planes: (112), (221) and (101). Label all intersections.

5) (3 pts.) Using the cube below, show the following crystal directions: [110], [011], and [201]. Label all intersections.

6.) (4 pts.) Consider the family of directions <111>. Which ones of these directions lie in the $(10\overline{1})$ plane?

7.) (5 pts.) The vacancy concentration in silicon is rising exponentially with temperature.

$$n_v = N_{Si} \exp\left(-\frac{E_v}{k_B T}\right)$$

with $N_{Si} = 5 \times 10^{22}$ cm⁻³, $k_B = 8.62 \times 10^{-5} eV/K$ and $E_V = 2 eV$.

By what factor does n_v drop when the Si crystal cools down from 1600K to 1000K?

$$2h\left(\frac{u_{\nu}(|\omega_{\nu}|)}{u_{\nu}(|\omega_{\nu}|)}\right) = -\frac{E_{\nu}}{k_{3}}\left(\frac{1}{|\omega_{\nu}|} - \frac{1}{|\omega_{\nu}|}\right)$$

$$6.25 \times 10^{-3}$$

W. W.

8.) (5 pts.) Today I measured the resistances of the filaments of a 150W and a 40W incadescent light bulb. My Ohm Meter showed 7Ω and 30Ω , respectively. Calculate the resistances of these two light bulbs based on their specifications running at 110V.

The power P disspated in Watts (W) is:

$$P = I \cdot V$$

The resistance R is: $R = \frac{V}{I}$

Compare your calculated result with the measurements. In case there are differences, explain these with physical arguments.

150 watt bulb ?

$$R = \frac{(110)^2}{150} = 80.72 + 2$$

compared to the 716 beading.

40 creft lande:

$$Q = \frac{(10)^2}{40} = 302.5\Omega$$
es compored to $30.\Omega$

the long difference in reastrainty is related to the fect that the resistivity in seasons with temperature. It An operating light half is very lost -> R large;

The Ohn total does not heat the lightball filement.

5
Described.

9.) (6 pts.) (a) The possibility to find an electron at energy E is given by the Fermi function F(E):

$$F(E) = \frac{1}{1 + \exp \frac{E - E_F}{k_B T}}$$

Determine F(E) at room temperature 300K for the following energies:

$$E-E_{F} = k_{B}T, 2k_{B}T, -k_{B}T, -2k_{B}T$$

$$= 0.269$$

$$= 0.1194$$

$$= 0.731$$

$$= 0.881$$

(b) Assume the Fermi level E_F lies in the middle of the bandgap of Si ($E_G = 1.1 \mathrm{eV}$). Calculate the probability to find at room temperature ($T = 300 \mathrm{K}$) an electron at the conduction band edge.

$$F(E) = \frac{1}{1 + eqp} \left[\frac{0.55 eV}{8.62 \cdot 10^{-5} eV/k \cdot 300 k} \right]$$

= 5.8 × 60 21.268

(c) as (b) but calculate the probability to find a hole at the valence band edge.

10.) (3 pts.) True or False	T	F	
- Phosphorus forms a donor in silicon.	$\langle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	()	
Silicon forms a donoi on an As site in GaAs.	11	on	deleted
- Germanium forms a donor on a Ga site in GaP.	(★)	()	
 For a given temperature, intrinsic silicon contains more free carriers than intrinsic germanium. 	()	$\langle \times \rangle$	
 A semiconductor containing the same amount of donors as acceptors exhibits a free carrier concentration large than the intrinsic carrier concentration. 	()	(X)	
 A given doped semiconductor is dominated by the dopants over a finite temperature range. 	(\times)	()	