Midterm 2

Phys 137B
(Dated: April 14, 2016)

Hints: several problems may be solved without calculation, or very little calculation. If you choose to do so, justify your answer specifically by the principles/ theorems that you are following.

1. Rabi problem Here is the (exact) Rabi solution for a two-level system with a level splitting of $\hbar \omega_{0}$ driven by perturbation of the form $H_{a b}=\left(V_{a b} / 2\right) e^{i \omega t}, H_{b a}=$ $\left(H_{a b}\right)^{*}$. The amplitudes for the two states are $c_{a}(t), c_{b}(t)$.

$$
\begin{align*}
& c_{a}(t)=\left[\cos \left(\frac{\Omega t}{2}\right)+i \frac{\delta}{\Omega} \sin \left(\frac{\Omega t}{2}\right)\right] e^{-i \delta t / 2} \tag{1}\\
& c_{b}(t)=-i \frac{\Omega_{R}}{\Omega} \sin \left(\frac{\Omega t}{2}\right) e^{i \delta t / 2} \tag{2}
\end{align*}
$$

where $\Omega=\sqrt{\Omega_{R}^{2}+\delta^{2}}, \Omega_{R}=V_{a b} / \hbar$ is the Rabi frequency and $\delta=\omega_{0}-\omega$ is the detuning.
a) 10 points What are the initial conditions $c_{a}(0), c_{b}(0)$ of this solution?
b) $\mathbf{1 0}$ points Find the solution for initial conditions $c_{a}(0)=0, c_{b}(0)=1$. Hint: you don't need to solve the differential equations for the two-level system from scratch. Instead, modify the above solution.
c) $\mathbf{1 0}$ points Assume $\delta=0$. Starting from the differential equations

$$
\begin{equation*}
\dot{c}_{a}=-\frac{i}{\hbar} H_{a b} e^{-i \omega_{0} t} c_{b}, \quad \dot{c}_{b}=-\frac{i}{\hbar} H_{b a} e^{i \omega_{0} t} c_{a} \tag{3}
\end{equation*}
$$

and show that Eqns. $(1,2)$ are indeed an exact solution to the Schrödinger equation.
2) $\mathbf{1 0}$ points Use the variational principle to show that first-order non-degenerate perturbation theory overestimates (and never underestimates) the ground state energy.
3) A mass m on a spring of spring constant k forms a one-dimensional harmonic oscillator with resonance frequency $\omega_{0}=\sqrt{k / m}$ (Fig. 3). The system is initially in
the ground state $|0\rangle$. Which of the following strategies will allow bringing the oscillator into the state $|1\rangle$? In each case, calculate the probability of finding the system in the state $|1\rangle$ at a time T after the perturbation has initially been switched on.
Hints. Use time-dependent perturbation theory and ignore the higher states $|2\rangle,|3\rangle, \ldots$. It's probably a good idea to use ladder operators. In all of the following, use the notation $\delta=\omega_{0}-\omega$. You may assume $|\delta| \ll\left|\omega_{0}\right|$.
(a) $\mathbf{1 0}$ points Modulating the point x_{0} (see Fig. 1) at which the spring is attached according to $x_{0}=A \cos \omega t$ with a small amplitude A.
(b) $\mathbf{1 0}$ points Modulating the mass according to $m=$ $m_{0}+m^{\prime} \cos \omega t$. You may assume that $m^{\prime} \ll m_{0}$.

FIG. 1. Mass on a spring. Except for part (b), assume that the spring is attached to a rigid point on the left hand side, so that $x_{0}=0$.
(c) 10 points Application of an impulsive force $F(t)=p_{0} \delta(t)$.
4. Geometric phase (10 points) A particle of mass m is in the second excited state $n=2$ of a harmonic oscillator potential $V=\frac{1}{2} m \omega^{2} x^{2}$. What is the geometric phase γ_{2} that the state accumulates when ω is adiabatically ramped down to half its initial value?

End of the exam. There are 80 points total.

